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Foreword

Efforts to understand and predict the behavior of software date back to the earliest
days of computer programming, over half a century ago. In the intervening decades,
the need for effective methods of understanding software has only increased; soft-
ware has spread to become the underpinning of much of modern society, and the
potentially disastrous consequences of broken or poorly understood software have
become all too apparent. Ben Liblit’s work reconsiders two common assumptions
about how we should analyze software and it arrives at some striking new results.

In principle, understanding software is not such a hard problem. Certainly a com-
puter scientist studying programs appears to be in a much stronger position than,
say, a biologist trying to understand a living organism or an economist trying to
understand the behavior of markets, because the biologist and the economist must
rely on indirect observation of the basic processes they wish to understand. A com-
puter scientist, however, starts with a complete, precise description of the behavior of
software—the program itself! Of course, the story turns out not to be so straightfor-
ward, because despite having a perfect description, programs are sufficiently com-
plex that it is usually difficult or even impossible to answer many simple questions
about them. Ben’s first change of assumption comes from the observation that if
programs are hard to understand, perhaps we could make use of some of the tools
that biologists and economists use to understand their complicated systems: maybe
it would be productive to regard programs as statistical processes and use statistical
techniques to understand software. We can simply run the program, make some ob-
servations and, if we ask the right questions, learn something useful about program
behavior. What questions to ask, and how to answer them, is the topic of the second
half of this book.

The second key ingredient comes from asking the question: Which program runs
should we use to gather the observations? Using test cases or automatically synthe-
sized inputs is a bit unsatisfying, as these executions may not be representative of the
reality of what users do with the software. And therein lies the answer: Use the runs
of the program’s users. These runs define the reality of how the software behaves in
practice; in a real sense, these are the executions that matter. In a networked world
it is possible to gather a small amount of information from every execution ever per-
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formed and from that information build up a model of program behavior about which
statistically meaningful statements can be made. How to actually gather that infor-
mation in a way that is unobtrusive and efficient as well as statistically sound is the
subject of the first half of this book.

The centerpiece of the monograph is an algorithm for isolating multiple bugs
from sparsely sampled data taken from many thousands of program executions. The
basic idea is to see which program events are strongly correlated with a subset of
program failures, remove those failures from consideration and then, recursively,
compute what events are correlated with the remaining failures. This algorithm has
unique properties that complement other program analysis techniques; in particu-
lar, it is potentially able to find the root cause of any program failure without first
requiring an explicit specification of the property to check. While Ben’s work fo-
cuses on finding the causes of bugs, the underlying approach is much more general
and should be adaptable to any program-understanding problem where one wants to
discover which program events are strongly correlated with some observable behav-
ior. The results Ben presents represent a new and fundamental approach to software
analysis and should provide a source of ideas and inspiration to the field for many
years to come.

January 2007 Alex Aiken



Preface

This book contains a revised version of the dissertation the author wrote in the Com-
puter Science Division of the Department of Electrical Engineering and Computer
Science of the University of California, Berkeley. The dissertation was submitted to
the Graduate Division in conformity with the requirements for the degree of Doc-
tor of Philosophy in December 2004. It was honored with the 2005 ACM Doctoral
Dissertation Award in May 2005.

Abstract

Debugging does not end with deployment. Static analysis, in-house testing, and good
software engineering practices can catch or prevent many problems before software
is distributed. Yet mainstream commercial software still ships with both known and
unknown bugs. Real software still fails in the hands of real users. The need remains
to identify and repair bugs that are only discovered, or whose importance is only re-
vealed, after the software is released. Unfortunately, we know almost nothing about
how software behaves (and misbehaves) in the hands of end users. Traditional post-
deployment feedback mechanisms, such as technical support phone calls or hand-
composed bug reports, are informal, inconsistent, and highly dependent on manual,
human intervention. This approach clouds the view, preventing engineers from see-
ing a complete and truly representative picture of how and why problems occur.

This book proposes a system to support debugging based on feedback from ac-
tual users. Cooperative Bug Isolation (CBI) leverages the key strength of user com-
munities: their overwhelming numbers. We propose a low-overhead instrumentation
strategy for gathering information from the executions experienced by large numbers
of software end users. Our approach limits overhead using sparse random sampling
rather than complete data collection, while simultaneously ensuring that the observed
data is an unbiased, representative subset of the complete program behavior across
all runs. We discuss a number of specific instrumentation schemes that may be cou-
pled with the general sampling transformation to produce feedback data that we have
found to be useful for isolating the causes of a wide variety of bugs.
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Collecting feedback from real code, especially real buggy code, is a nontrivial
exercise. This book presents our approach to a number of practical challenges that
arise in building a complete, working CBI system. We discuss how the general sam-
pling transformation scheme can be extended to deal with native compilers, libraries,
dynamically loaded code, threads, and other features of modern software. We address
questions of privacy and security as well as related issues of user interaction and in-
formed user consent. This design and engineering investment has allowed us to begin
an actual public deployment of a CBI system, initial results from which we report
here.

Of course, feedback data is only as useful as the sense we can make of it. When
data is fair but very sparse, the noise level is high and traditional manual debugging
techniques insufficient. This book presents a suite of new algorithms for statistical
debugging: finding and fixing software errors based on statistical analysis of sparse
feedback data. The techniques vary in complexity and sophistication, from simple
process of elimination strategies to regression techniques that build models of sus-
pect program behaviors as failure predictors. Our most advanced technique combines
a number of general and domain-specific statistical filtering and ranking techniques
to separate the effects of different bugs and identify predictors that are associated
with individual bugs. These predictors reveal both the circumstances under which
bugs occur and the frequencies of failure modes, making it easier to prioritize de-
bugging efforts. Our algorithm is validated using several case studies. These case
studies include examples in which the algorithm found previously unknown, signifi-
cant crashing bugs in widely used systems.
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1

Introduction

There are no significant bugs in our released software that any
significant number of users want fixed.

–Bill Gates quoted in FOCUS Magazine

Real software is buggy. Real users can make it better. Cooperative Bug Isolation
(CBI) seeks to leverage the huge amount of computation done by the end users of
software. By gathering a little bit of information from every run of a program per-
formed by its user community, we are able to make inferences automatically about
the causes of bugs encountered in the field.

1.1 Perfect, or Close Enough

Many computer scientists think of a program as either correct (i.e., it meets some
specification) or incorrect (i.e., it does not meet some specification). But industrial
software development is as much about economics as computer science. Software
quality is a monetary balancing act among engineers’ salaries, time to market, user
expectations, and other business concerns. We ship software when it seems correct
enough to neither embarrass us nor alienate users. We ship software with known
bugs that are not worth fixing, and users uncover new bugs that developers never
imagined. An observer in residence at the game development studios of Electronic
Arts (EA) wrote that

The largest sin at EA is not delivering a title on time. . . . Making an out-
standing game, but delivering it late, is not as profitable as making an accept-
able quality game on time. EAers talk about “maximum on-time-quality.”
[52]

Clearly practitioners use something other than a Boolean notion of correctness,
but such a notion has been difficult to quantify. In-house testing can only guess at
field usage patterns, and poor guesses can leave users in bad shape. A seemingly
obscure, low-priority bug that was difficult to reproduce in the testing lab may turn
out to affect large numbers of users on a regular basis. Technical support channels
provide one way for post-deployment feedback to reach engineers, but traditionally
these mechanisms have been informal and overly dependent on human intervention.

B. Liblit: Cooperative Bug Isolation, LNCS 4440, pp. 1–6, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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1.2 Automatic Failure Reporting

Industry critics have said that many software vendors treat their customers like beta
testers. If that is so, then we are not yet using these thousands or millions of testers
as effectively as we could. Traditionally, most software failures produce a grumpy
user and no diagnostic feedback, which benefits no one.

This situation is starting to change as a result of ubiquitous Internet connectiv-
ity. KDE, GNOME, Mozilla/Netscape, and Microsoft have all deployed automated,
opt-in crash reporting systems. These systems gather key information about program
state after a failure has occurred: stack trace, register contents, and the like. By send-
ing this information back to the development organization, the user community helps
developers effectively triage bugs that cause crashes and focus on the problems ex-
perienced by the most users.

However, automatic crash reporting systems create a new problem: developers
who are overwhelmed with bug reports, many of which may be redundant, and who
must prioritize their work in terms of which bug fixes are likely to provide the great-
est net benefit in the shortest amount of time. As of this writing, the Bugzilla bug
tracking database for the open source Mozilla web browser project shows 58,661
open bugs; an additional 104,764 have been marked as duplicates of bugs already
reported [44]. Mozilla augments manual bug reporting with an automated crash
feedback system. This system currently shows 186,180 automated crash reports for
Mozilla Firefox 2.0 over a ten day period, accounting for 5,024,104 hours of “test-
ing” by end users [45]. As early as 2002, Microsoft’s Watson error reporting service
had collected crash reports from half a million separate programs. Experience with
Watson has shown that one percent of software errors cause fifty percent of user
crashes [41].

We believe that ubiquitous crash reporting is progress in the right direction, but
we also believe that existing approaches only scratch the surface of what is possible
when developers and users are connected by a network. For example, crash report-
ing systems in mainstream end user environments do not gather any information
about what happened before the crash. Trace information leading up to the failure
may contain critical clues to the actual problem. Also, crash reporting systems report
no information for successful runs, which makes it difficult to distinguish anomalous
(crash-causing) behavior from innocuous behavior common to all executions. In gen-
eral, the information gathered by crash reporting systems is not very systematic, and
in all feedback systems of which we are aware (crash reporting or otherwise) the
subsequent data analysis is highly manual.

1.3 The Next Step Forward

The high level of redundancy exhibited by existing crash reporting systems suggests
that there is great potential to harness the user community as a distributed, brute force
bug hunting resource. Because the most important bugs are those that happen most
often to the most users, it is not necessary to trace program behavior in a complete,
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invasive, perfectly controlled manner. Rather, we can use lightweight instrumenta-
tion to sample a small amount of information about each run, and then merge this
information to form an aggregate picture of how the software is working and failing
in the field. Furthermore, the feedback loop can flow in both directions: aggregate
error reporting can direct engineers toward bugs, and engineers can steer instrumen-
tation toward code regions of interest based on observed failure trends.

The idea of gathering data from actual user executions is not new. Large enter-
prise database systems, for example, routinely produce extensive log files. The first
action when a user reports a problem is to inspect those logs. Similarly, each flight
of the Boeing 777 generates logs that are subsequently combed for signs of possible
problems [21]. There are many other similar examples in the world of high end and
safety critical systems. However, no such feedback channels have been available to
the multitudinous end users of mainstream commercial software.

In our view, wide deployment of such an infrastructure would have several ben-
efits:

• For deployed software systems, the number of executions in actual use dwarfs
the number of executions produced in testing by orders of magnitude. For many
software systems today, essentially all of the information from user executions is
discarded, because there is no mechanism for feedback. Retaining even a small
portion of that information could be valuable.

• Gathering information from all, or at least a representative sample, of user exe-
cutions gives an accurate picture of how the software is actually used, allowing
better decisions about how to spend scarce resources on modifications. In par-
ticular, bugs that affect a large number of users are a higher priority than bugs
that are very rare. This kind of information is almost impossible to obtain from
anywhere other than actual user executions.

• While our primary interest is in finding and fixing quality problems, information
gathered from user executions could be useful for other purposes. For example,
software authors may simply wish to know which features are most commonly
used, or we may be interested in discovering whether code not covered by in-
house testing is ever executed in practice, etc.

• Traditional user feedback about problems often consists of a call from a relatively
unsophisticated user to a perhaps only somewhat more sophisticated technical
support center. In a networked world, it is simply more efficient and accurate to
gather this information automatically.

• Many bugs sit on open bug lists of products for an extended period of time be-
fore an engineer is available to work on the bug. Automatically gathering data
from user executions allows for automated analysis without human intervention.
Thus, when an engineer is finally available to work on a problem, the results of
automated analyses done in the interim may help the engineer to identify and fix
even relatively simple problems more quickly.
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1.4 Cooperative Bug Isolation

A Cooperative Bug Isolation system must meet several challenges if it is to be vi-
able in the real world. The first problem is that the method for gathering information
must have only a modest impact on the performance of the user’s program. Our ap-
proach, discussed in Chap. 2, is based on fair random sampling. Classical sampling
for measuring program performance searches for the “elephant in the haystack”: it
is looking for the biggest consumers of time. In contrast, we are looking for needles
(bugs) that may occur very rarely, and furthermore our sampling rates may be very
low to maintain client performance. These requirements lead us to be concerned with
guaranteeing that the sampling is statistically fair, so that we can rely on the reported
frequencies of rare events. Chapter 2 presents a general sampling transformation,
applied at compile time, that converts unconditional instrumentation into instrumen-
tation that is sampled randomly but fairly, in a very strict statistical sense, as the
program runs.

A second problem is that information from the client must be transmitted over the
network to a central database. Gathering even a relatively small amount of data peri-
odically from a large number of clients creates significant scalability problems. One
would like to monitor behaviors that are likely to be probative regarding a wide vari-
ety of yet-unknown bugs while still reducing, compacting, or even discarding enough
information to keep communication and storage requirements modest. Chapter 2
continues with a discussion of several instrumentation schemes that we find to be
scalable and useful in practice for distributed debugging. The remainder of Chap. 2
explores additional performance optimizations and variations on the basic sampling
strategy.

A third, perhaps more vague problem is that such a system must actually work
with real applications, on real desktops, in the hands of real users. Chapter 3 dis-
cusses our solutions to a potpourri of issues that arise in assembling a complete,
working Cooperative Bug Isolation system. We discuss how the transformations of
Chap. 2 interact with features of various modern languages and software architec-
tures; consider privacy and security concerns and steps taken to address them; present
a view of the system from the end user’s perspective; and conclude the chapter with a
review of the status of a large scale public deployment of Cooperative Bug Isolation
that is currently under way.

The fourth and ultimate challenge is using this randomly sampled, noisy, terribly
incomplete data to actually find and fix bugs. Why do some runs succeed and others
fail? How does the sparsely observed behavior of good runs differ from that in bad
runs? Our strategy for answering these questions, statistical debugging, is based on
building statistical models of program success or failure as a function of observed
behaviors. Chapter 4 describes several statistical debugging techniques that we have
developed from the simple to the sophisticated. We present the results of several case
studies used to evaluate our statistical debugging algorithms.

Figure 1.1 presents an informal, conceptual overview of our system showing how
its pieces fit together to form a feedback loop of continuously improving software
quality.
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Fig. 1.1. Conceptual overview of Cooperative Bug Isolation system

The process begins at left, with program source. Our system requires no manual
instrumentation or annotation: we work directly with unmodified C code. We feel
that this design constraint was important to facilitate rapid adoption by large, pre-
existing application code bases. Program source is fed into a tool chain that appears
from the outside to be a standard compiler augmented with some additional high-
level configuration options. Internally, however, the build process has three distinct
steps: insertion of unconditional instrumentation, generic sampling transformation,
then native compilation to binaries ready for distribution.

End users install the shipping application, thereby forming a large, diverse user
community. Each use of an application, whether successful or failed, generates a
feedback report. The feedback report consists of a concise instrumentation dump
along with a binary outcome flag: did the run succeed or fail? “Fail” here might sim-
ply be defined as “crashed,” as crashing is an easy outcome to detect and something
that we all agree should never happen. However, one of our case studies demon-
strates that more refined, domain-specific notions of failure are equally viable. All
we require is a binary outcome label.

A central feedback database aggregates these feedback reports for analysis. Us-
ing statistical debugging techniques, we identify those behaviors that are strongly
correlated with failure along with information about how often the various failure
modes occur. This information helps engineers fix individual bugs. Just as impor-
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tantly, it supports bug triage grounded in reality: engineers can immediately see
which bugs are affecting the most users, and thus focus their own attention where
it will do the most good.

As engineers fix bugs the feedback loop is completed. Improvements to the pro-
gram source are re-instrumented and redistributed to users, who now see more stable
software and whose feedback reports now focus even more sharply on those prob-
lems that remain. This process yields reality-directed debugging: software that im-
proves over time in precisely those ways that provide the most benefit to the user
community at large.



2

Instrumentation Framework

The major difference between a thing that might go wrong and
a thing that cannot possibly go wrong is that when a thing that
cannot possibly go wrong goes wrong, it usually turns out to
be impossible to get at or repair.

–Douglas Adams, Mostly Harmless

This chapter describes the process of going from unmodified application source code
to native executables with sampled instrumentation. This process is managed by the
instrumentor: a software tool whose external behavior mimics that of the native com-
piler, but that internally applies the instrumentation injection and sampling transfor-
mation steps depicted at the top center of Fig. 1.1. Our instrumentor, sampler-cc,
is implemented as a source-to-source transformation for C using the CIL C front
end [48]. Transformed code then proceeds to GCC for native compilation. From
the developer’s perspective, the sampler-cc command behaves exactly like the gcc
command with a few extra instrumentation-related command line flags.

Section 2.1 presents the basic strategy for managing fair, randomly sampled
instrumentation. This sampling transformation is quite general, with potential ap-
plications beyond bug hunting. However, bug hunting is the focus of this book,
and Sect. 2.2 describes several instrumentation schemes that may be used with the
sampling transformation and that we have found to be helpful for bug isolation.
Section 2.3 considers performance issues and examines several optimizations that
may be applied atop the basic sampling transformation. Section 2.4 describes an
adaptive, non-uniformly sampled generalization of the core random sampling model,
while Sect. 2.5 closes the chapter with an informal discussion of realistic sampling
rates in truly large scale deployments.

2.1 Basic Instrumentation Strategy

This section describes our sampling framework. We begin with sampling of basic
blocks and gradually add features until we can describe how to perform sampling for
entire programs. Suppose we start with the following C code:

{
check(p != NULL);
p = p->next;

B. Liblit: Cooperative Bug Isolation, LNCS 4440, pp. 7–38, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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check(i < max);
total += sizes[i];

}

Our sampling framework can be configured to sample arbitrary pieces of code,
which may be either portions of the original program or instrumentation predicates
added separately. Section 2.2 describes several instrumentation schemes that we have
found useful. For the remainder of this section, assume that each italicized check
call is an instrumentation site that has been tagged for sampling. The precise behavior
of an instrumentation site is of no concern to the sampling transformation itself. We
require only that each such site be removable. That is, performing some check calls
and skipping others must not affect the user-visible behavior of the program.

2.1.1 Sampling the Bernoulli Way

Suppose that we wish to sample one hundredth of these checks. Maintaining a global
counter modulo one hundred is simple, but has the disadvantage of being trivially
periodic. If the above fragment were in a loop, for example, one of the checks would
execute on every fiftieth iteration while the other would never execute. To avoid this
temporal aliasing we wish sampling to be fair and uniformly random: each check
should independently have a 1/100 chance of being sampled each time it occurs. This
property is characteristic of a so-called Bernoulli process, the most common example
of which is repeatedly tossing a coin. We wish to sample based on the outcome of
tossing a coin that is biased to come up heads only one time in a hundred.

A naïve approach would be to use a simple random number generator. Suppose
rnd(n) yields a random integer uniformly distributed between 0 and n−1. Then the
following code gives us fair random sampling at the desired density:

{
if (rnd(100) == 0) check(p != NULL);
p = p->next;

if (rnd(100) == 0) check(i < max);
total += sizes[i];

}

This strategy has some practical problems. Random number generation is not
free: tossing the coin may be slower than simply doing the check unconditionally.
Furthermore, what was previously straight-line code is now dense with branches and
joins, which may impede other optimizations.

Sampling is sparse. Each of the conditionals has a 99/100 = 99% chance of not
sampling. On any run through this block, there is a (99/100)2 ≈ 98% chance that both
instrumentation sites are skipped. If we determine, upon reaching the top of a basic
block, that no site in that block is sampled, then we can branch into fast-path code
with all conditionally-guarded checks removed. This design requires two versions of
the code: one with sampled instrumentation, one without. It also requires that we can
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predict how many future sampling opportunities are skipped before the next one is
taken.

Anticipating future samples requires a change in randomization strategy. Con-
sider a sequence of biased coin tosses, with “0” indicating no sample and “1” indi-
cating that a sample is to be taken. Temporarily increasing the sampling density to
1/5, we might have:

〈0,0,0,0,0,1
︸ ︷︷ ︸

6

,0,0,0,1
︸ ︷︷ ︸

4

, 0,1
︸︷︷︸

2

,0,0,1
︸ ︷︷ ︸

3

, . . . 〉

An equivalent representation counts the number of tosses until (and including)
the next sampled check: 〈6,4,2,3, . . .〉. This representation is predictive: the head
of the sequence can be treated as a countdown, telling us how far away the next
sample is. If we are at the top of a basic block containing only two checks, and the
next sampling countdown is 6, we know in advance that neither of those sites is
sampled on this visit. Instead, we merely discard two tosses and proceed directly to
the instrumentation-free fast path:

{
if (countdown > 2) {

/* fast path: no sample ahead */
countdown -= 2;
p = p->next;
total += sizes[i];

} else {
/* slow path: sample is imminent */
if (--countdown == 0) {

check(p != NULL);
countdown = getNextCountdown();

}
p = p->next;

if (--countdown == 0) {
check(i < max);
countdown = getNextCountdown();

}
total += sizes[i];

}
}

The instrumented code does extra work to manage the next-sample countdown,
but the fast path is much improved. The only overhead is a single compare/branch
and a constant decrement, and this overhead is amortized over the entire block. In
larger blocks with more instrumentation sites, the initial countdown check has a
larger threshold, but that one check suffices to predict a larger number of skipped
sampling opportunities.
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Consider the distribution of countdown values. With a sampling density of 1/100,
there is a 1/100 chance that we sample at the very next opportunity. There is a (99/100)×
(1/100) that the next chance is skipped but that the one after that is taken. A countdown
of three appears on a (99/100)2 × (1/100) chance, and so on. These numbers form a
geometric distribution whose mean value is the inverse of the sampling density (that
is, 100). Numbers in a geometric distribution characterize the expected inter-arrival
times of a Bernoulli process, such as the number of tails before the next head, or in
our case the number of instrumentation sites skipped before the next sample is taken.

Happily, repeated tossing of a biased coin is not necessary: geometrically dis-
tributed random numbers can be generated directly using a standard uniform random
generator and some simple floating-point operations. Let rand(0,1) be a source of
random floating point numbers on the open interval between zero and one. Let 1/d be
the desired sampling rate, such as 1/100. Then a new geometrically distributed count-
down may be computed as

countdown =
⌊

log(rand(0,1))
log(1− 1/d)

⌋

+ 1.

The denominator in the above equation is fixed for a given sampling rate, so
generating one new countdown requires

• one random floating point number
– m random bits for a floating point representation with an m-bit mantissa
– discard and repeat if all m bits are 0 (exceedingly rare)

• one floating point logarithm
• one floating point division
• one truncating conversion from floating point to integer
• one integer increment

This work is then amortized across an average of d succeeding instrumentation
sites. Subsection 2.3.5 considers additional options for speeding up countdown re-
sets.

In theory, a countdown may need to be arbitrarily large. However, the odds of a
1/100 countdown exceeding 232 −1 are less than one in 10107

, so storing countdowns
as simple 32-bit unsigned integers is sufficient for all practical scenarios.

2.1.2 From Blocks to Functions

The scheme for blocks outlined above generalizes to an arbitrary control flow graph
as follows. Any region of acyclic code has a finite number of possible paths. Let
the maximum number of instrumented sites on any path be the region’s weight. A
countdown threshold check can be placed at the top of each acyclic region. If the
next-sample countdown exceeds the weight of an acyclic region on entry to that
region, then no samples are taken on that pass through the region.

Any cycle in a control-flow graph without instrumentation is weightless and may
be disregarded. Any cycle with instrumentation must also contain a threshold check,
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which guarantees that if we start at any threshold check and execute forward, we
cross only a statically bounded number of instrumentation sites before reaching the
next threshold check. Thus, we can compute a static weight for each threshold check.

There is some flexibility regarding exactly where a threshold check is placed, but
computing an optimal solution is NP-hard [32]. For simplicity, our present system
places one threshold check at function entry and one along each loop back edge.
Weights may be computed in a single bottom-up traversal of each function’s control
flow graph.

The sampling transformation produces two complete copies of the function body.
One contains full instrumentation, with each possible sample guarded by a decre-
ment and test of the next-sample countdown. The other copy, the fast path, merely
decrements the countdown where appropriate, but otherwise has all instrumentation
removed. We stitch the two variants together at threshold check points: at the top of
each acyclic region, we decide whether a sample is imminent. If it is, we branch into
the instrumented code. If the next sample is far off, we continue in the fast path code
instead.

Figure 2.1 shows an example of code layout for a function containing one con-
ditional and one loop. Dotted nodes represent instrumentation sites; these are re-
duced to countdown decrements in the fast path. The boxed nodes represent threshold
checks; we have added one at function entry and one along the back edge of the loop.
This code layout strategy is a variation on that used by Arnold and Ryder to reduce
the cost of code instrumented for performance profiling [2]. The principal change in
our transformation is the use of geometrically distributed countdowns in conjunction
with acyclic region weights to choose between the two code variants. Arnold and
Ryder use fixed sampling periods (e.g., exactly once per n opportunities, or exactly
once per n instructions) and do not apply region-specific weighting. Our approach
imposes more overhead, but offers greater statistical rigor in the resultant sampled
data. Arnold and Ryder have studied several variations with different trade-offs of
code size versus overhead; the same choices apply here.

2.1.3 Interprocedural Issues

In general, a called function might cross any number of instrumentation sites before
returning to its caller. Barring interprocedural analysis, we cannot assign a statically
bounded weight to any control flow graph node containing a function call. Therefore,
we treat each such call as an acyclic region boundary. A region ends before an opaque
function call, and a new region begins just after.

The same treatment applies to language-specific mechanisms for interprocedural
control transfer. In C, setjmp and a few related functions form region boundaries.
In languages with more structured exception handling, such as Java or C++, a new
region forms below the catch point that receives a thrown exception.

If interprocedural analysis is available, then we can avoid splitting regions at
some calls. Subsection 2.3.2 discusses this optimization in greater detail.
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> 4?

> 3?

Fig. 2.1. Example of instrumented code layout

2.2 Instrumentation Schemes for Distributed Debugging

Our framework for statistically fair sampling can be used for any program monitoring
application. Before examining performance and optimizations in detail, it is useful to
have specific scenarios in mind. Our primary interest here is distributed debugging,
so we are interested in data that helps engineers find bugs in deployed software.
Here we briefly discuss the main problems that arise in this context and a particular
solution that we adopt. We then present a suite of instrumentation schemes. These
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schemes are the basis for the performance and optimization studies that follow, and
are also used in several case studies discussed in Chap. 4.

2.2.1 Issues in Remote Sampling

Remote monitoring can harm performance in several ways. As usual the performance
penalty imposed by the extra monitoring code cannot be excessive. Disk and mem-
ory space is limited, so we must limit the size of data retained, even temporarily, on
a user’s machine. Network bandwidth to transmit results to a central server is also
a concern. The user’s primary goal is to use the software, not fix it, so in each of
these cases we must be frugal with the user’s resources. Any central server has lim-
ited storage and communication resources as well, compounded by the fact that it
is aggregating many runs. For example, if we wish to retain all sampled data, then
storage on the central server grows linearly with the number of executions even if
the data collected from each execution is constant size.

Our approach is to sample the value of each of a very large, but fixed, set of pred-
icates on program state. Some predicates are observed directly at instrumentation
sites: we call these fundamental predicates. In general one instrumentation site may
induce multiple predicates at the same location. For example,

“x < y on line 319 of utils.c”,
“x = y on line 319 of utils.c”, and
“x > y on line 319 of utils.c”

might be three fundamental predicates comparing the values of two variables at a
particular instrumentation site. When an observation is made at a site, all fundamen-
tal predicates are observed simultaneously. Thus, a single observation of this site
appearing on line 319 of utils.c would observe one of the three predicates to be
true and would observe the other two predicates to be false.

We do not report a running stream of true/false predicate observations as execu-
tion proceeds. Rather we only count the number of times each fundamental predicate
is observed to be true. One global variable maintains the count for each fundamen-
tal predicate. We refer to these global variables as predicate counters or as simply
counters. They should not be confused with the global next-sample countdown.

At the end of execution, all counters are serialized into a feedback report giving
the final count for each fundamental predicate. For example, we might find that on a
particular run,

“x < y on line 319 of utils.c” was observed true 25 times,
“x = y on line 319 of utils.c” was observed true 3 times, and
“x > y on line 319 of utils.c” was observed true 1 time.

We can never know how often the predicates were actually true, but we count
how often they were observed to be true.

Maintaining a vector of global counters produces feedback reports whose size is
largely independent of the sampling density or running time. The loss of information
is significant, as the order of the observations is discarded. However, predicate coun-
ters do provide at least a partial window into dynamic program behavior before a
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failure. That may be a useful addition to the postmortem stack trace commonly used
to report fatal errors today.

In some instrumentation schemes, the fundamental predicates can be augmented
by a set of inferred predicates derived offline. For each inferred predicate we derive
an inferred predicate counter that describes how often the inferred predicate would
have been observed to be true if it had actually been tracked during execution. Con-
tinuing the example from the preceding paragraph, we infer that

“x≥ y on line 319 of utils.c” would have been observed true 3+1 times,
“x �= y on line 319 of utils.c” would have been observed true 25+1 times, and
“x≤ y on line 319 of utils.c” would have been observed true 25+3 times.

Inferred predicates have no runtime cost and can be particularly useful for dis-
tinguishing certain boundary cases, such as x < y versus x ≤ y. However, they also
significantly enlarge the set of possible bug causes, making scalability of bug isola-
tion algorithms more of a concern. The statistical debugging algorithms discussed in
Chap. 4 use a variety of strategies to filter out uninteresting predicates quickly before
applying more computationally intensive techniques.

In our running example of comparing x and y, notice that the fundamental pred-
icates logically partition the space of all possibilities, and that summing any two
fundamental predicate counters yields an inferred predicate counter for the disjunc-
tion. All instrumentation schemes we use have this partition property, which lets us
infer one additional piece of information. Summing all of the fundamental predicate
counters at a site gives the number of times that the site itself was observed, without
regard to any specific predicate at that site. In our running example, we know that
25 + 3 + 1 observations we made at the site that compares x and y on line 319 of
utils.c. The site may have been reached many more times than that, but there were
exactly 29 times when the site was reached and an observation was made.

2.2.2 Counter-Based Instrumentation Schemes

Within the general approach of predicates and counters, we have many choices as
to what predicates are worth counting. Our current implementation offers several
instrumentation schemes that have proved useful for isolating a variety of bugs in C
programs:

branches

Control flow behavior may reveal places where the program made a fateful decision.
The branches scheme considers each control flow decision to be potentially interest-
ing. Each if statement induces two fundamental predicates. The first fundamental
predicate asserts that the branch is false, while the second fundamental predicate as-
serts that the branch is true. We treat these two predicates as a single instrumentation
site: when the branch is reached, if a sample is due, then exactly one of the two fun-
damental predicates’ counters will be incremented. There are no inferred predicates
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for this scheme, but we can sum the two predicates at any site to determine how often
the site itself was observed.

The branches scheme also counts behavior at many two-way branches that are
implicit in C code. The branch governing each while or for loop is instrumented, as
is the branch implied by the logical (&&, ||) and conditional (?:) operators. switch
statements create multi-way branches; these would require more than two counters
per site and are not tracked by the current implementation.

float-kinds

Unusual floating point values may arise during a calculation, propagate from one
expression to the next, and only later cause failure. The float-kinds scheme attempts
to detect earlier precursors to delayed failures of this kind. We introduce one float-
kinds instrumentation site at each assignment to a floating point variable, or at each
call to a function that returns a floating point value. Each site tracks the following
nine fundamental predicates:

1. returned value is negative infinity (−∞)
2. returned value is negative and normal
3. returned value is negative and denormalized (very close to zero)
4. returned value is negative zero (−0)
5. returned value is not a number (NaN)
6. returned value is positive zero (+0)
7. returned value is positive and denormalized (very close to zero)
8. returned value is positive and normal
9. returned value is positive infinity (+∞)

Separately counting every possible floating point value is impractical. This nine-
way partition of the set of values is based on numeric classes from the IEEE 754
floating point standard [34]. It captures important sign distinctions and unusual val-
ues while requiring only a small number of predicates and predicate counters.

function-entries

Simple function coverage information may reveal which parts of a program are im-
plicated in failures. The function-entries scheme induces one instrumentation site at
the entry to each function. This site has one fundamental predicate which is always
true. The associated counter, then, is merely a sampled count of the number of times
the containing function is called.

g-object-unref

The GLib Object System (GObject) provides an object oriented programming frame-
work for C [23]. It serves as the basis for several higher-level toolkits, such as Pango,
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GTK+, and GNOME, that are widely used in Linux and Open Source software. GOb-
ject manages memory using reference counting, and expects C programmers to man-
age these reference counts explicitly. We expect that mismanaged reference counts
are a common source of hard-to-find heap corruption errors.

The g_object_unref function decrements a GObject instance’s reference count.
The g-object-unref scheme instruments each such call, inducing one instrumentation
site with four fundamental predicates on the state of the object just before the decre-
ment:

1. zero references: the instance is already being reclaimed
2. one reference: the instance will be reclaimed within the g_object_unref call

that follows
3. more than one reference: the instance is not about to be reclaimed
4. invalid: the argument is not a valid GObject instance

The first and last cases clearly indicate that an error has already happened. The
second and third cases, which represent nearly all behavior in practice, may or may
not reveal a bug depending on other program behavior. Note that the four funda-
mental predicates partition the space of all possibilities, with exactly one being in-
cremented per sample. Thus, as in the case of the branches scheme, the sum of all
counters at one site gives the approximate (sampled) coverage at that site. We could
add inferred predicates corresponding to the disjunctions of the four fundamental
predicates, but this has not seemed useful to date.

returns

Function return values can be interesting when used to report the success or failure
of various operations. This use is particularly common in C, which lacks excep-
tion handling. As for the float-kinds scheme, counting all possible return values is
impractical, so the returns instrumentation scheme induces just three fundamental
predicates at each function call:

1. returned value is negative
2. returned value is zero
3. returned value is positive

As before, each sample increments exactly one fundamental predicate counter,
so the sum of all three of a site’s fundamental predicate counters gives approximate
coverage at that site. We augment the three fundamental predicates with three in-
ferred predicates whose counts are derived by summing of two of the fundamental
predicate counts:

1. returned value is non-negative
2. returned value is non-zero
3. returned value is non-positive
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The standard C library makes extensive use of return values as success/failure
indicators, and it is often the sign of the returned value that distinguishes success
from failure. POSIX follows the same model, as do many programmers. Even within
one library there is little consistency as to exactly which sign indicates what. For
example, open returns negative values for errors while fopen returns zero (NULL).
“Unchecked return values” are a common class of programming error; the returns
scheme checks all return values, even those that were ignored by the original pro-
gram.

This scheme only instruments calls to functions returning characters, integers,
and pointers. Pointers are treated as having an unsigned integer type and therefore
will only ever be zero (NULL) or positive (non-NULL). Functions that return other
types, such as floating point numbers or aggregates, are not instrumented, as these
are rarely used to report errors. void-returning functions are not instrumented.

scalar-pairs

Variables within a program often have important relationships with each other or
with program constants. Work on the Daikon project has shown that it is useful to
identify implicit, often simple invariants as an aide to program evolution [19]. When
hunting for bugs, it may be useful to identify near-invariants that are only violated
when the program fails.

The scalar-pairs scheme examines possible invariants from a restricted, light-
weight subset of the much larger family considered by Daikon. At each assignment
to a variable x, identify all other same-typed local or global variables y1,y2, . . . ,yn

that are currently in scope. Each pair of variables (x,yi) induces an instrumenta-
tion site that compares the new value of x with the existing value of yi using three
fundamental predicates:

1. x < yi

2. x = yi

3. x > yi

One sample at one site increments one counter for one of these three fundamental
predicates. As in the returns scheme, we can sum all three counters for coverage
information or sum any two to derive counts for three inferred predicates:

1. x≥ yi

2. x �= yi

3. x≤ yi

The scalar-pairs scheme only instruments assignments to character-, integer-, or
pointer-typed variables. Assignments of aggregates, floating point, and other types
are ignored.1 In its basic form, only assignments to simple named variables are in-
strumented. Developers who want more detailed instrumentation may also enable

1 The name “scalar-pairs” is therefore a misnomer. The C99 standard considers floating point
types to be scalar [36], but we do not currently instrument floating point assignments using
this scheme.
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instrumenting of assignments across pointers, into structure and union fields, and
into indexed arrays. Developers may also allow comparison to constants, in which
case x will be compared with every constant expression seen in the program. This
list includes, for example, enumeration constants, the element counts of fixed-size
arrays, and many other potentially important “magic numbers.”

Note that the list of same-typed in-scope variables always includes x itself. In
this case, the site is comparing the new value of x on the left side of the compari-
son to the old value of x on the right side of the comparison. This new-versus-old
comparison can be useful to detect bugs due to a failure to monotonically increase or
decrease some variable. The value 0 is always included for comparison as well, even
if comparison with all program constants is not enabled.

2.2.3 Additional Instrumentation Schemes

In addition to the schemes described above, the current implementation offers several
schemes that do not report results as fundamental predicate counters.

ccured

CCured is a source-to-source translator that prevents memory safety violations in
C programs [47]. It attempts to prove memory accesses safe at compile time; the
remainder are checked at runtime using a variety of assertions. Our ccured instru-
mentation scheme treats each CCured runtime assertion as a sampled instrumenta-
tion site. Thus, the program is no longer guaranteed to detect and block all memory
safety violations. Instead it simply has a random chance of detecting each such error.
This scheme may be thought of as one example of a more generic instrumentation
scheme that randomly samples programmer assertions. In that sense, CCured is sim-
ply a source of unusually assertion-dense programs.

bounds

Some bugs are associated with unusually small or large values, such as an out-of-
bounds array index or a negative number where only positive values were expected.
The bounds scheme induces an instrumentation site at each character-, integer-,
or pointer-typed assignment. The site records a pair of values: the minimum and
maximum value ever observed at that assignment. Calls to character-, integer-, and
pointer-returning functions are instrumented as well, with each site recording the
minimum and maximum value ever returned from the associated call.

Unlike the counter-based schemes described earlier, it is not meaningful to add
the minimum and maximum values at a site. One can, however, check whether a
given site was ever sampled. The minimum value tracker is initialized to the max-
imum value representable in the given type, while the maximum value tracker is
initialized to the minimum representable value.
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time stamps

While the case studies in Chap. 4 show that one can go a long way ignoring order-
ing, we expect there are interesting bugs that require ordering information. The in-
strumentor implementation currently provides a limited facility for associating time
stamps with sampled instrumentation sites. This feature does not constitute an in-
strumentation scheme in its own right, but rather offers additional information that
the developer can choose to overlay on top of any selected schemes.

Time stamping comes in two forms: first-sample and last-sample. In first-sample
time stamping, each instrumentation site from any scheme has an additional piece
of information associated with it: the time of the first sample actually taken at that
site. “Time” here is virtual. We maintain a global “clock” that starts at zero and ticks
forward by one each time any instrumentation site is sampled. Thus first-sample time
stamping yields a record of the relative orders in which sites were first sampled.

Last-sample time stamping also gives each site a snapshot of the global clock
value at the moment a sample is taken. Here we update that snapshot on every sam-
ple of a site rather than only the first. Thus last-sample time stamping yields a record
of the relative orders in which sites were last sampled leading up to program termi-
nation.

Clearly these time stamps form an incomplete record of program behavior. One
cannot distinguish multiple samples at one site. With sparse sampling, most sites are
reached but not sampled, so even the site with first-sample time stamp of “1” is prob-
ably not the first site actually reached during execution. However, these time stamps
do provide at least some information. They may be particularly useful in isolating
bugs due to improper ordering of initialization or finalization logic; code handling
these tasks typically runs just once per execution, so multiple sample ambiguity is
less of a problem.

One possible approach to using time stamps is to infer predicates “a first sam-
pled before b” and “a last sampled before b” on all pairs of sites (a,b). (One might
also write these more formally as predicates over program traces in linear temporal
logic.) Existing algorithms, described in Chap. 4, may be applied to these predicates
to discover which ones are predictive of failure. However, it is important to note that
multi-event predicates rapidly become hard to observe: a base sampling rate of 1/100

implies only a 1/10,000 chance of observing any pair of independent events. It may
be difficult to obtain enough time stamp data to draw statistically significant conclu-
sions. To date, we have not experimented much with the time stamping facility, and
so its usefulness in practice remains unknown.

2.3 Performance and Optimizations

For ubiquitous monitoring to be practical, it must be lightweight. Users have better
things to do then wait around while an application ploddingly debugs itself. In this
section we assess the performance impact of both unconditional and sampled instru-
mentation. We consider the basic strategy described above as well as a number of
optimizations specially tuned to code produced by the sampling transformation.
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Table 2.1. Instrumentation overhead in typical configuration (continues on next page)

Overhead For Sampling Rate

Scheme Benchmark Always 1/10 1/100 1/1,000 1/10,000

branches bh 46% 210% 32% 16% 13%
bisort 50% 159% 19% 0% 0%
compress 134% 463% 80% 38% 31%
em3d 61% 225% 42% 23% 21%
health 18% 40% 4% 1% 0%
ijpeg 113% 406% 62% 24% 20%
mst 17% 42% 11% 7% 7%
perimeter 84% 551% 127% 83% 77%
power 8% 136% 16% 2% -2%
treeadd 15% 44% 8% 4% 4%
tsp 106% 161% 19% 5% 3%
vortex 160% 585% 100% 47% 33%

returns bh 9% 30% 13% 11% 12%
bisort 6% 49% 6% 0% 0%
compress 5% 39% 9% 6% 4%
em3d 1% 2% 1% -1% -1%
health 2% -1% -5% -4% -5%
ijpeg 5% 40% 7% 5% 3%
mst 23% 25% 7% 5% 5%
perimeter 61% 236% 48% 27% 24%
power 1% 0% 0% 0% 0%
treeadd 27% 49% 8% 5% 5%
tsp 9% 3% 0% -1% 0%
vortex 36% 116% 30% 23% 19%

We have measured the performance of instrumented code using a collection of
twelve CPU-intensive benchmarks selected from the SPEC CPU95 [57] and Olden
[11] suites. Our basis for comparison is the same code compiled with no instrumen-
tation whatsoever. We consider a range of sampling rates, and also a special “always”
configuration in which instrumentation is added but the sampling transformation is
not applied. This configuration lets us explore whether the speed boost from having a
fast path is enough to compensate for the overhead of sampling itself, such as region
checks and countdown management.

Table 2.1 gives the overhead for each benchmark at each sampling rate. Overhead
here is measured as increase in wall clock run time as compared with instrumentation-
free code. We present results for three of the instrumentation schemes described ear-
lier: branches, returns, and scalar-pairs. The scalar-pairs scheme is used here with
comparison to variables and 0 only, not to other program constants. A fourth “all
of above” pseudo-scheme simultaneously uses branches, returns, and scalar-pairs in-
strumentation in a single binary. All measurements were taken on one CPU of a
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Table 2.1. Instrumentation overhead in typical configuration (continued)

Overhead For Sampling Rate

Scheme Benchmark Always 1/10 1/100 1/1,000 1/10,000

scalar-pairs bh 533% 5,043% 720% 120% 22%
bisort 471% 2,112% 274% 69% 44%
compress 1,899% 8,764% 1,113% 175% 72%
em3d 164% 862% 101% 21% 12%
health 34% 173% 16% 2% 2%
ijpeg 1,322% 6,171% 799% 135% 41%
mst 74% 397% 52% 13% 8%
perimeter 105% 814% 110% 30% 22%
power -2% 239% 29% 11% 8%
treeadd 60% 412% 51% 9% 4%
tsp 42% 191% 26% 3% 1%
vortex 616% 3,987% 555% 105% 45%

all of above bh 576% 5,205% 731% 126% 28%
bisort 570% 2,309% 301% 69% 44%
compress 2,049% 9,075% 1,202% 191% 74%
em3d 226% 1,118% 136% 35% 25%
health 41% 230% 22% 5% 1%
ijpeg 1,422% 6,627% 869% 149% 46%
mst 86% 452% 62% 15% 10%
perimeter 209% 1,565% 246% 99% 76%
power 23% 406% 55% 19% 16%
treeadd 69% 524% 62% 12% 7%
tsp 140% 359% 51% 9% 4%
vortex 804% 4,708% 679% 130% 60%

four-way 2.8 GHz Intel Xeon SMP with 3.7 GB RAM. The host is running Fedora
Core 2 with Linux kernel version 2.6.8. The C runtime library is glibc version 2.3.3,
vendor-supplied without instrumentation. All benchmarks were compiled using GCC
version 3.4.3 with “-O3” and no other special optimization flags. Our instrumentor
was used in its typical configuration. This configuration includes a number of default
optimizations that we discuss at greater length below. Each percentage in the table
represents an average across five runs with five distinct random seeds. Repeated runs
in the same environment, or changing only the seed, show negligible variation.

First considering just the “Always” column, observe that overheads vary tremen-
dously between benchmarks and instrumentation schemes. If the purpose of sam-
pling is to reduce overhead, we have starting overheads ranging from 2,049% (a
major slowdown when all three schemes are simultaneously applied to the compress
benchmark) to -2% (a slight speedup when scalar-pairs instrumentation is applied to
the power benchmark). Instrumentation schemes vary in their aggressiveness, with
some adding far more sites than others. But overhead can vary widely even within
a single scheme: scalar-pairs with unconditional (“always”) instrumentation causes
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Fig. 2.2. Benchmarks meeting performance goals in typical configuration: overhead ≤ 5%
( ), overhead ≤ 10% ( ), and overhead ≤ 15% ( )

the compress benchmark to run 1,899% slower but causes the power benchmark to
run 2% faster. This variation shows that deployment of any of these instrumentation
schemes cannot be a mindless, purely mechanical process. One must consider the
specific properties of the code in question, identify critical bottlenecks, and intelli-
gently weigh the desire to collect data against the need to maintain acceptable perfor-
mance. What constitutes “acceptable” is inherently domain specific: a numerically
intensive simulation has different requirements from a web browser or a database
transaction server. The particular example of power running 2% faster with uncondi-
tional scalar-pairs instrumentation also highlights the fact that any code perturbation
can randomly shift performance by a few percentage points due to measurement
noise, cache alignment changes, and other hard-to-control-for factors.

Figure 2.2 presents an alternate view of the same data, summarized to allow eas-
ier identification of trends. We choose 5%, 10%, and 15% as somewhat arbitrary
overhead goals, and count how many of the twelve benchmarks meet each of those
goals. For example, suppose we are interested in the returns instrumentation scheme
with 1/100 sampling. Then the upper-right (“returns”) graph shows that four bench-
marks have 5% overhead or less; five benchmarks have between 5% and 10% over-
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head; one benchmark has between 10% and 15% overhead; and the remaining two
benchmarks have more than 15% overhead.

These graphs clearly show that some schemes are more lightweight than others.
The returns scheme is especially cheap, with most benchmarks showing low over-
head even without sampling. For some applications, one might reasonably decide to
deploy this scheme in “always” mode, collecting complete data without sampling.
The scalar-pairs scheme is the most costly, due to two factors. First, scalar-pairs adds
far more individual instrumentation sites than any other scheme. This means a larger
memory footprint, more observations, more countdown management, and more time
spent on the slow path. Second, scalar-pairs instrumentation sites include many com-
parisons between pairs of local variables. This artificially enlarges the live ranges of
local variables, increasing register pressure and making register allocation substan-
tially less effective.

In each scheme, a pronounced dip at 1/10 reveals that this rate is too dense to be
beneficial. At such a high sampling rate, not enough time is spent in the fast path to
overcome the overhead of the sampling infrastructure. Thus 1/10 sampling performs
worse than unconditional instrumentation. Performance improves across the board as
we reduce the rate to 1/100. This rate is roughly the break even point at which sampling
and always-on instrumentation have comparable overhead. Of course, given a choice
between only these two, one would opt for “always” as it provides more complete
data. However, we can buy back even more performance by further reducing the
sampling rate. 1/1,000 consistently outperforms unconditional instrumentation. Most
schemes do continue to improve at 1/10,000, suggesting that their performance ceilings
reside at yet sparser sampling rates. Referring back to Table 2.1, improvements from
1/1,000 to 1/10,000 are largest for exactly those benchmarks that perform the worst, such
as bh, compress, and vortex. Sparser random sampling increases the effective noise
level of the sampled data relative to ideal, complete data. So even if some application
continues speed up at, say, 1/109 sampling, that may not be practical relative to the size
of that application’s user base and the time one is willing to wait in order to find bugs.
Section 2.5 considers these trade-offs in greater detail.

The subsections that follow describe and evaluate several specific optimizations
that have been implemented or proposed. Overall, we find that most of the opti-
mizations implemented to date have no significant effect on performance. With few
exceptions, the performance profile depicted in Fig. 2.2 remains largely unchanged.
However, it is important to keep in mind that these are CPU-intensive benchmarks.
One would expect to see worse performance here than on more realistic, complete
applications. Performance has not been an issue, at least so far, in the applications we
have studied and deployed. One would also expect that less invasive instrumentation
strategies (e.g. returns) perform better than more invasive ones (e.g. scalar-pairs), and
they do. The surprise is that performance remains slower than we would like on some
benchmarks even with multiple optimizations and with sampling rates very close to
zero. This suggests the presence of tight inner loops with little chance to amortize the
cost of deciding between the fast and slow paths. In such situations, loop unrolling
may offer a way to make acyclic regions larger and amortization more effective. We
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Fig. 2.3. Change in overhead without static branch prediction. Positive numbers indicate larger
overhead relative to typical configuration.

can also simply avoid instrumenting selected performance critical sections of code.
Subsection 2.3.7 considers this selective exclusion technique in greater detail.

2.3.1 Static Branch Prediction

As discussed in Sect. 2.1.1, each acyclic region of a transformed control flow graph
chooses between fast and slow variants depending on the current next sample count-
down and the threshold weight of that region. When sampling is sparse, this thresh-
old check will usually branch into the fast path. This fact creates a good oppor-
tunity for static branch prediction. We pass a hint to the native C compiler using
__builtin_expect, a non-standard GCC extension.

In theory, this static branch prediction helps GCC’s optimizer make better code
generation and layout decisions. In practice, the effects are small. Table 2.1 and
Fig. 2.2 included static branch prediction. Figure 2.3 shows how overheads grow
or shrink when static branch prediction hints are omitted.

In these graphs, each circle represents a single benchmark at a single sampling
rate. Positive numbers represent increases in overhead relative to the typical instru-
mentor configuration; negative numbers represent reductions in overhead. To take
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an extreme example, Table 2.1 reports that with scalar-pairs instrumentation and
1/10 sampling, the compress benchmark exhibits 8,764% overhead in the typical in-
strumentor configuration. If static branch prediction hints are omitted, this overhead
shrinks to 8,611, for a net overhead reduction of 153 percentage points. The lower
left (“scalar-pairs”) graph shows one circle at -153 for sampling rate 1/10 representing
this reduction in overhead for one benchmark.

Based on this information, static branch prediction hints at the tops of acyclic re-
gions are not a clear benefit. Most overheads change by only a few percentage points,
and as many benchmarks speed up as slow down. Measurement noise and random
effects such as cache alignment likely account for most of these small perturbations.
The perimeter benchmark, however, is an interesting counterexample. When run with
branches instrumentation, perimeter consistently shows between 15 and 20 percent-
age points lower overhead when static branch prediction hints are disabled. This is
visible as four circles running along the bottom edge of the top left (“branches”)
graph. The size of this change is fairly consistent even though the actual overhead
varies from 551% to 77% depending on the sampling rate. It is unclear why this par-
ticular benchmark so consistently improves without static branch prediction hints.
We suspect that the hints may be causing GCC to make heuristic code layout deci-
sions that are helpful for most code but that happen to be harmful for the perimeter
benchmark.

One can artificially construct a program with very large acyclic regions. In such
a program, acyclic region threshold weights are high and therefore the slow path is
often used. Static branch prediction hints in such a program would be more often
wrong than right, creating additional overhead unless hints are disabled. However,
any such large-region effect would be especially pronounced at dense sampling rates,
and we see no such trend in the data shown in Fig. 2.3. Therefore, overly large acyclic
regions do not appear to be a problem for these benchmarks.

2.3.2 Weightless Functions

Subsection 2.1.3 conservatively assumed that any function call might change the
next sample countdown arbitrarily. Therefore, a new threshold check must appear
immediately after each function call. This treatment is appropriate if, e.g., the caller
and callee are being compiled separately.

However, if the callee is known and available for examination while compiling
the caller, a simple interprocedural analysis can be used to refine this conservative
assumption. Define a weightless function as one with following properties:

• The function contains no instrumentation sites.
• The function only calls other weightless functions.

The set of weightless functions can be computed via a standard fixpoint algo-
rithm, requiring no more iterations than the depth of the longest non-recursive call
chain.

For purposes of identifying acyclic regions and introducing threshold checks,
calls to weightless functions are invisible. Acyclic regions can extend below such
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Fig. 2.4. Change in overhead without weightless function optimization. Positive numbers in-
dicate larger overhead relative to typical configuration.

calls, and no additional threshold check is required after such a call returns. A further
benefit is that the bodies of weightless functions may be compiled with no modifi-
cations. They have no threshold checks, no instrumented code, and therefore require
no cloning or transformation of any kind.

The current instrumentor implementation performs weightless function analy-
sis for direct, statically bound calls within a single compilation unit. Dynamically
bound calls across function pointers are conservatively assumed to be non-weightless
(“weighty”) pending integration of a points-to analysis. Called functions in separate
compilation units are also assumed to be weighty unless explicitly declared otherwise
via a special preprocessor pragma. As a special case, all functions in the standard C
runtime libraries (libc and libm) are assumed weightless with the exception of:

• bsearch and qsort, which may call weighty comparison predicates,
• setjmp, longjmp, and a few related functions, which perform interprocedural

control transfer.

Table 2.1 and Fig. 2.2 included optimization of calls to weightless functions.
Figure 2.3 shows how overheads grow or shrink when this optimization is disabled
by assuming that all functions are weighty. Again, positive numbers represent larger
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overheads without this optimization. Negative numbers represent smaller overheads
without this optimization. Overall we find no consistent benefit or harm. Special
treatment of calls to weightless functions does not have an appreciable, reliable effect
on performance.

2.3.3 Empty and Singleton Regions

Two special cases arise after computing the threshold weights of acyclic regions. A
region may contain no instrumentation sites, giving it threshold weight zero. The
sampling transformation disregards any such regions. They require no threshold
check and no slow/fast code cloning. In effect, we generate only the fast path; the
slow path would be dead code and therefore is omitted. If a loop contains no instru-
mentation sites, then the instrumentor need not even treat the loop as a cycle. An
“acyclic” region may actually include an arbitrary number of instrumentation-free
loops.

The second special case concerns singleton regions: those with threshold weight
one. Any path through such a region crosses at most one instrumentation site. Cross-
ing one instrumentation site entails decrement and check of the next sample count-
down. However, even the fast path would have one check (the top-of-region threshold
check) and one decrement (where the instrumentation site would otherwise appear).
Therefore, the fast path for singleton regions is no faster than the slow path. Instead
of generating both, we omit the fast path, omit the top-of-region threshold check,
and only generate code for the slow path. Note that this optimization applies to any
region with threshold weight one, even if multiple sites appear within the region. A
region consisting of a branch with one site on each arm is still a singleton region, as
any path through that region crosses at most one site.

Table 2.1 and Fig. 2.2 included empty and singleton region specialization.
Figure 2.3 shows how overheads grow or shrink when this optimization is disabled
and empty and singleton regions are cloned into fast and slow paths like all other
regions. Positive numbers indicate that disabling region specialization makes code
slower. In the branches and returns schemes we see a general trend toward larger
overheads without this optimization. Inversely, special treatment of empty and sin-
gleton regions shrinks overhead by roughly three to five percentage points with these
schemes. The effect, while small, is consistent across multiple benchmarks and sam-
pling rates and therefore appears to be genuine.

The scalar-pairs scheme adds a very large amount of instrumentation. Almost
any fragment of realistic code will induce multiple instrumentation sites, so empty
and singleton regions are rare when the scalar-pairs scheme is in use. This is visible
as a lack of a clear positive or negative trend in the lower left (“scalar-pairs”) and
lower right (“branches + returns + scalar-pairs”) graphs of Fig. 2.3. The optimization
does no harm in these cases; it is merely inapplicable.

2.3.4 Local Countdown Caching

Careful examination of the assembly code produced for instrumented applications
reveals that having the next-site countdown in a global variable can be expensive.
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Fig. 2.5. Change in overhead without region specialization. Positive numbers indicate larger
overhead relative to typical configuration.

Our native C compiler, GCC, treats the many “--countdown” decrements along the
fast path quite poorly. It will not, for example, coalesce a sequence of five such
decrements into a single “countdown -= 5” adjustment. This lack of optimization
apparently stems from conservative assumptions about aliasing of global variables.

Efficient countdown management requires that the native C compiler take greater
liberties when optimizing these decrements. We assist the native compiler by caching
the countdown in a local variable within each function:

1. At function entry, import the current global countdown into a local variable.
2. Use this locally cached countdown for all decrements, threshold checks, and

sampling decisions.
3. Just before function exit, export the locally cached countdown back out to the

global.

To maintain agreement across all functions, we must also export just before
each function call and import again after each call returns. Again, though, calls to
weightless functions may simply be ignored, as they do not change or even inspect
the countdown. Similarly, the bodies of weightless functions need not import and
export at entry and exit, since they always leave the countdown unchanged. With
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Fig. 2.6. Change in overhead without local next sample countdown cache. Positive numbers
indicate larger overhead relative to typical configuration.

this change, the conventional native C compiler can coalesce decrements, store the
cached countdown in a register, and perform other standard optimizations.

Table 2.1 and Fig. 2.2 cached the next sample countdown in local variables.
Figure 2.3 shows how overheads grow or shrink when a local variable cache is not
used, and the next sample countdown is accessed directly as a global variable. Posi-
tive numbers indicate that disabling countdown caching makes code slower.

In the lower left and lower right graphs, where the scalar-pairs scheme is active,
we find large increases in overhead without the local countdown cache. Because
scalar-pairs adds so many instrumentation sites, the next sample countdown is ac-
cessed very frequently. Even straight line code may cross multiple instrumentation
sites, so decrement coalescing is important here too. The beneficial effect of using a
local cache is pronounced at dense sampling rates, such as 1/10 and 1/100, but extends
to sparser rates as well.

The benefits of this optimization come at a cost: extra import operations are
required to keep the local and global countdowns consistent across function calls.
When calls to weighty functions are common, and acyclic regions small, this ad-
ditional bookkeeping may overwhelm the benefits of using the local cache. The
branches and returns schemes show no clear benefit to local countdown caching, pos-
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sibly due to these import/export costs. If further study confirms that these costs are a
problem, alternate approaches are possible. For example, one might pass the count-
down from caller to callee as an additional function argument or store the countdown
in a dedicated global register. Care must be taken to apply such a coordinated change
in a way that does not break non-instrumented callers or callees in a mixed-code
environment.

2.3.5 Random Countdown Generation

Subsection 2.1.1 enumerated the operations required to reset the next sample count-
down after each measurement. Amortization helps share the cost of these operations.
For an additional performance boost, one might instead generate a bank of random
countdowns offline, before starting the instrumented application. An instrumented
application consumes them from first to last, and may wrap around to the first again
if too few were provided.

Our implementation supports this alternate strategy. Banks of 1,021 random
countdowns may be generated offline and stored in binary form. At runtime a bank
is mapped into memory using mmap and accessed efficiently as an array. On our ref-
erence platform, the Intel IA-32 (a.k.a. x86), one countdown occupies four bytes,
so 1,021 countdowns fit within a single four kilobyte virtual memory page. Further-
more, 1,021 is prime, reducing the chance of bad temporal aliasing with any periodic
behavior within the application. With a typical sampling rate of 1/100, a bank of 1,021
random countdowns covers an average of 102,100 site crossings before repeating.

An even faster approach eschews randomization entirely, and always resets the
next sample countdown to a fixed value, such as 100 for a sampling rate of 1/100. As
discussed in Sect. 2.1.1, this approach runs a high risk of creating temporal aliasing
with periodic program behaviors. The data collected may no longer be a truly fair,
representative sample of complete program behavior. However, fixed-period sam-
pling may be a useful strategy to consider when performance is so important as to
trump strict statistical correctness. Extremely common, repeating program behaviors
will still be visible, which made periodic sampling reasonable for Arnold and Ry-
der to use when hunting performance bottlenecks [2]. However, rare bugs, or bugs
caused by rare behaviors, risk being systematically lost due to temporal aliasing.

Table 2.1 and Fig. 2.2 used online generation of random countdowns as needed.
Figure 2.7 shows how overheads grow or shrink when countdowns are generated
offline. Figure 2.8 shows how overheads grow or shrink when countdowns are not
random at all, but instead use a fixed reset value of d for sampling rate 1/d. High sam-
pling rates consume random countdowns more rapidly, and these results show that
random countdown generation is indeed a major source of overhead when sampling
is dense. The scalar-pairs scheme magnifies this same effect: speeding up countdown
generation is critical when using this instrumentation-intensive scheme at high sam-
pling rates.

For sparse sampling rates, a single countdown lasts longer and therefore the cost
of generating the next countdown is less significant. No consistent performance boost
is seen at 1/1,000 and 1/10,000 for either offline or fixed countdowns. This result suggests
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Fig. 2.7. Change in overhead with offline random countdown generation. Positive numbers
indicate larger overhead relative to typical configuration.

that the cost of true statistical fairness is not excessive in cases such as bug hunting,
where rare events may carry great significance.

2.3.6 Path Balancing

When the fast path consists of simple, straight-line code, the C compiler may be able
to coalesce multiple countdown decrements into a single larger adjustment. For ex-
ample, GCC performs this optimization provided that the countdown is cached in a
local variable per Sect. 2.3.4. However, decrement coalescing cannot extend across
branches, because the multiple forward paths may contain different numbers of in-
strumentation sites and therefore require different net adjustments to the countdown.

Path balancing generalizes decrement coalescing to arbitrary acyclic regions. The
key is to ensure that all forward paths through an acyclic region cross the same
number of instrumentation sites. Imbalances occur at branches. When a control flow
graph node has multiple successor paths with different weights, extra “dummy” sites
are added to the start of those successor paths that have fewer “real” sites than their
siblings, thereby creating balance. When all branches in a region are balanced, the
entire region is balanced as well.
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Fig. 2.8. Change in overhead with fixed, non-random countdown. Positive numbers indicate
larger overhead relative to typical configuration.

Figure 2.9a gives an example of an acyclic region before balancing. Nodes with
instrumentation sites have dotted outlines. Notes are lettered for ease of reference,
and the number in each node gives the maximum weight of all paths forward from
that node. The entire region has threshold weight 2 but individual paths cross 0 (abe),
1 (adh), or 2 (abc f g, abc f h) sites. Branch nodes a, b, and f may require balancing.
Branch a does have imbalanced successors: one dummy site must be added on the
ad edge. Branch b is also imbalanced: two dummy sites must be added on the be
edge. Branch f is already balanced: both successors already have matching weights.

Figure 2.9b shows the same acyclic region after balancing. Three unlettered
dummy sites have been added. The threshold weight for the entire region (2) is now
the exact number of sites crossed on each of the four paths through the region starting
from entry node a.

Balancing is not an optimization in and of itself. Rather, it actually adds instru-
mentation in the form of dummy sites. However, once a site is balanced, we can
optimize the code as follows. Just before the first node of the fast path, decrement
the next sample countdown by the threshold weight of the entire region (for exam-
ple, “countdown -= 2” just before node a in Fig. 2.9b). This increment accounts
for exactly the number of unary decrements that would have occurred in this region.
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Fig. 2.9. Example of path balancing

Elsewhere in the fast path, wherever a real or dummy instrumentation site would
have appeared, do nothing. The decrements have already been accounted for and
there is no other work to do.

The slow path must decrement and check the countdown at each instrumentation
site as before, because on the slow path we do need to know exactly when a site
should be sampled. Furthermore, even dummy sites must decrement the countdown
and reset it if it reaches zero. This requirement ensures that both the fast and slow
paths behave the same with respect to counting down to the next sample, at the
expense of making the slow path even slower. Also, adding dummy instrumentation
sites means that the countdown will need to be reset more often, so a slow random
number generator will be more of a liability here.

In total, path balancing makes the fast path faster and the slow path slower. The
path balancing algorithm has not yet been implemented. Evaluating its net effect on
performance is left as future work.

2.3.7 Statically Selective Sampling

It is not necessary to put all instrumentation into a single executable; one can easily
create multiple executables where each contains a subset of the complete instrumen-
tation. Partitioning instrumentation by site, by module, by function, or by object file
are all reasonable strategies. Any individual executable contains less instrumentation
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Table 2.2. Number and percentage of functions excluded to achieve 15% performance goals

Instrumentation Scheme

Benchmark branches returns scalar-pairs all of above

bh 1 (2%) - 3 (7%) 5 (12%)
bisort - - 4 (25%) 4 (25%)
compress 3 (13%) - 6 (26%) 7 (30%)
em3d 1 (7%) - 1 (7%) 2 (13%)
health - - - -
ijpeg 4 (1%) - 10 (2%) 11 (2%)
mst 2 (14%) - - 1 (7%)
perimeter 3 (38%) 1 (13%) 1 (13%) 3 (38%)
power - - - 4 (24%)
treeadd - - - 1 (11%)
tsp 1 (8%) - - -
vortex 35 (4%) 12 (1%) 53 (6%) 88 (10%)

and therefore incurs a smaller performance penalty. Fewer sites mean more weight-
less functions, and therefore better interprocedural optimization per Sect. 2.3.2.
Functions without instrumentation sites require no code duplication, which limits
executable growth. Known trusted code can be exempted from instrumentation, or
especially suspect code can be “farmed out” to a larger proportion of users for more
intensive study. Given a suitable dynamic instrumentation infrastructure, sites can be
added or removed over time as debugging needs and intermediate results warrant.

We have experimented with benchmarks in which only a single function is instru-
mented at a time, using the CCured instrumentation scheme. Whereas fully instru-
mented executables range from 13%-149% larger than their non-sampling counter-
parts, average code growth for single-function instrumented executables is just 12%
for the small Olden benchmarks and 6% for the larger SPEC CPU95 applications.
Performance is uniformly good: at 1/1,000 sampling, 94% of site-containing functions
incur less than 5% slowdown versus instrumentation-free code, while even the worst
single function has less than a 12% penalty.

Instead of instrumenting one function at a time, we might start with a fully instru-
mented application and then selectively exclude high-traffic functions from instru-
mentation. We can exclude functions in this manner, one at a time, until performance
reaches desired levels on some test suite believed to be representative of real world
usage patterns. The set of high-traffic functions can itself be refined over time using
coverage information derived from feedback reports as suggested in Sect. 2.2.2. The
same process could be applied at a finer-grained level, such as basic blocks or even
individual statements or instrumentation sites. Function exclusion is sufficient here
to demonstrate the technique.

Figure 2.2 showed that many benchmarks fail to reach a performance goal of
15% maximum overhead when all functions are instrumented. We have iteratively
excluded functions in each benchmark, for each instrumentation scheme, until the
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overhead at 1/1,000 sampling was no greater than 15%. Table 2.2 shows how many
functions had to be excluded in each case, as an absolute count of functions and as
a percentage of all non-library functions in the benchmark. Benchmark and scheme
configurations that met the 15% goal with no exclusion at all are listed as “-”. In
general we find that the absolute number of excluded functions is small in the small
benchmarks, although the percentage may appear large. Conversely, the percentage
of excluded functions is small in the larger benchmarks, although the absolute count
may appear large. These results suggest that for CPU intensive applications it is a
reasonable compromise to identify and exclude a small performance-critical kernel
to achieve low overheads while retaining the benefits of sampled instrumentation
elsewhere in the application.

2.3.8 Optimization Recap

The experiments of this section show that we can instrument and sample code with
reasonable performance, although we may have to resort to excluding some perfor-
mance critical code to achieve that with our current implementation. Two remaining
sources of overhead that we have identified are the instrumentation code left on the
fast path and suboptimal code due to being forced to rely on the whims of the native
compiler’s optimizer. Improvements to the instrumentation algorithm, such as path
balancing, can solve the first problem. Binary rewriting techniques can address the
second, as demonstrated in recent work by Chilimbi et al. (see Sect. 5.2). We have
not explored either avenue further to date because the performance of our existing
implementation has thus far been more than adequate for our experiments and public
deployment. Developing a better understanding of the performance characteristics of
sampled instrumentation remains an important area for future work.

2.4 Adaptive Sampling

Our basic instrumentation strategy treats all sites equally. Each site is observed in lin-
ear proportion to the number of times it is reached, modulo random sampling. How-
ever, not all program behaviors are equally interesting, especially when looking for
bugs. One might want more detailed information about newly written code, novice
code, complex code, rarely executed code, security-sensitive code, code implement-
ing brittle features, or code that raises a red flag in the developer’s mind for any other
reason. Nonuniform sampling requires both a policy to decide what is interesting as
well as a mechanism for translating that interest into adjusted sampling rates.

We present here two mechanisms for varying the sampling rate across different
instrumentation sites followed by some general notes on policy selection.

2.4.1 Nonuniformity Via Multiple Countdowns

We can implement nonuniform sampling using multiple global next sample count-
downs instead of just a single countdown. At run time, maintain several countdowns
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tuned to different average sampling rates, such as 1/1, 1/100 and 1/10,000. (A “random” 1/1
countdown is always reset to exactly 1, thereby sampling at every opportunity.) Each
acyclic region is bound to one of these countdowns, and the threshold weight check
and all countdown decrements use the bound countdown. In simple cases, bindings
can be static. If the adaptation policy requires post-deployment changes, either bi-
nary patching or an extra level of indirection can be used to change each region’s
binding at program launch time or even dynamically as the program runs.

Multiple countdowns are conceptually straightforward, though they complicate
the instrumentation process in practice and therefore have not yet been implemented.
It is easy to directly set the sampling rate for any acyclic region. Any desired rate
may be used, though implementations might choose to limit the total number of
distinct global countdowns. Because countdowns are bound on a per-region basis, all
sites within an acyclic region must use the same sampling rate, and a site appearing
in multiple regions forces rate matching on all of them. However, acyclic regions
need not be maximal. If the rate-matching restriction is found to be problematic at
instrumentation time, a large region can be subdivided into smaller ones bound to
distinct countdowns.

2.4.2 Nonuniformity Via Non-Unit Site Weights

Throughout Sect. 2.1 we assumed that each site had identical, unit weight. The
threshold weight of a region is the largest total weight of sites crossed on any one
path through that region. However, we need not restrict ourselves to unit weights.
We might select an arbitrary site of interest and assign it weight two. Upon reaching
that site, we decrement the next sample countdown twice, and take a sample if either
decrement drives the countdown to zero. When computing acyclic region threshold
weights, any path crossing this “heavier” site adds a weight of two instead of one.
The effect is as though we had two copies of the site in sequence. A site with weight
three will be observed even more frequently. In general, if the core, underlying sam-
pling rate is 1/d, and execution reaches an instrumentation site with weight w, then
the probability of making an observation is

1− (1− 1/d)w. (2.1)

This formula gives the probability of seeing at least one success (equivalently,
not seeing w failures) in w trials of a 1/d Bernoulli process. Weights must be natural
numbers, so a given core rate defines a discrete family of derived sampling rates.
For d = 10, the available sampling rates include {0.1, 0.19, 0.271, 0.3439, . . .}.
For d = 1,000, the available sampling rates include {0.001, 0.001999, 0.002997,
0.003994, . . .}. Sparser core rates yield smaller steps between derived rates. In all
cases, the least sampling probability is 1/d when w = 1, while the sampling proba-
bility asymptotically approaches 1 as w increases without bound. (In practice, if the
countdown is stored as a 32-bit unsigned integer, then setting w to 232−1 guarantees
that every possible sample will be taken.)

This approach offers both benefits and drawbacks compared to using multiple
countdowns. Implementation is simpler, and this approach is already available for use
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in the instrumentor. Weights need not be uniform within an acyclic region. A much
larger family of sampling rates is available. On the other hand, one does not have
truly arbitrary rates, only those derived from the core sampling rate. The hyperbolic
curve defined by Equation 2.1 has some inconvenient properties. Doubling a site’s
weight does not double its sampling rate. Doubling the core sampling rate does not
uniformly double the sampling rates for all sites: the actual rate increase depends on
each site’s weight. If one wants to maintain certain proportions between the sampling
rates of different sites, site weights must be changed with any change to the core rate,
and certain proportions may be impossible to achieve exactly. Both schemes allow
for adaptive sampling: weights can be patched in at a binary level or else read from an
external manifest. One does need to recompute regions’ threshold weights, though,
based on the weights assigned to their contained sites. This calculation requires some
extra bookkeeping that the multiple countdowns scheme avoids.

In principle, these two mechanisms can coexist. One can provide multiple count-
downs, with each region bound to one countdown and each site within that region
assigned its own weight. This hybrid approach offers maximum flexibility at a price
of maximum engineering complexity.

2.4.3 Policy Notes

At present we have only limited experience with different policies for deciding which
sites are worth closer attention. We note, however, that nonuniform sampling for bug
isolation is especially well matched to a policy based on code coverage. Empirical
studies show that rarely executed code exhibits higher defect density than frequently
used code [29, 33], an effect that is even more pronounced post-deployment [30].
Denser sampling of rarely executed code, even as high as 1/1 (complete data), should
have a relatively small impact on performance, while sparser sampling of heavily
used code will improve performance. Thus nonuniform sampling based on code cov-
erage should provide useful debugging information while simultaneously reducing
overhead. Subsection 4.4.1 and Sect. 4.6 define and use one such coverage-guided
policy.

2.5 Realistic Sampling Rates

From the benchmarks of Sect. 2.3 and the case studies in Chap. 4, we conclude
that realistic deployments will use sampling densities between 1/100 and 1/1,000. But
how effective is 1/1,000 sampling at observing rare program behavior? Suppose we
are interested in an event occurring once per hundred executions. To achieve 90%
confidence of observing this event in at least one run, we need at least

log(1−0.90)

log
(

1− 1
100 ×

1
1,000

) = 230,257 runs.

While 230,257 is a large number of runs, consider that sixty million Office XP
licenses were sold in its first year on the market [42]. Assuming that the average
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licensee runs Microsoft Word twice per week, then this user base produces 230,257
runs every nineteen minutes. Achieving 99% confidence of observing an event that
occurs on one in a thousand runs requires 4,605,170 runs, which takes less than seven
hours to gather.

For smaller deployments, we must either wait longer for sufficient data or in-
crease the sampling density. As we will see in Sect. 4.2 and Sect. 4.3, at least for
restricted classes of bugs we can perform useful analysis with a few thousand execu-
tions. Thus, our techniques are likely most suited to applications where it is possible
to gather data with at least 1/1,000 sampling from thousands of executions per day.
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Practical Considerations

It compiles. Ship it.

–Bart Schaefer, Vice President of Engineering,
Z-Code Software Corporation

We believe that CBI and related research efforts have great potential to make soft-
ware development more responsive and efficient by giving developers accurate data
about how software is actually used in deployment. However, testing this idea re-
quires significant experimentation with real, and preferably large, user communities
using real applications. This chapter reports on our experience in preparing for such
experiments.

We have selected several large open source applications, listed in Table 3.1, com-
prising some two million lines of code before instrumentation. We have built instru-
mented packages using the strategy described in Chap. 2, made these packages avail-
able to the public, and are now in the process of collecting feedback reports. We have
not yet identified any bugs using these reports: our user base is still too small, and
does not provide reports in the quantities needed by our statistical debugging tech-
niques. However, we have demonstrated an end-to-end complete CBI system and feel
comfortable in claiming that our approach is technically feasible. While aspects of
our system could certainly be improved, at this point all components are good enough
to support the deployment of realistic instrumented applications and the collection
of feedback reports from a large user community.

Table 3.1. Applications from the public deployment

Application Lines of Code Shared Libraries Plugins Threads

EVOLUTION 574,224 � � �
GAIM 209,639 �
THE GIMP 657,156 � �
GNUMERIC 319,137 �
NAUTILUS 129,439 � � �
RHYTHMBOX 59,569 � �
SPIM 20,300

B. Liblit: Cooperative Bug Isolation, LNCS 4440, pp. 39–54, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The design of a CBI system involves interesting challenges, both technical and
social. In the next several sections, we focus on the solutions to technical problems
most likely to be useful to the designers of similar systems and experiments: integra-
tion with existing native compilers (Sect. 3.1), management of static and dynamic
linkage (Sect. 3.2), and correct execution in the presence of threads (Sect. 3.3).

Moving toward the social domain, Sect. 3.4 discusses the privacy and security
facets of widespread monitoring of deployed software. Section 3.5 considers CBI
from the user’s perspective, and presents our approach to ensuring that users remain
fully informed about and fully in control of their participation in the CBI system.

Lastly, Sect. 3.6 briefly reviews the current status of our public deployment, and
offers general information about the state of this experiment under way.

3.1 Native Compiler Integration

The instrumentor as a whole looks and behaves like a C compiler with a few extra
command line flags. It specifically emulates GCC, giving us easy access to a large
corpus of open source applications. No manual annotation of source code is required,
and all existing configuration scripts and makefiles work transparently. This design
lets us instrument millions of lines of open source code and keep up with new releases
with very short turnaround. Simply changing an environment variable ($CC) builds
an application with our instrumenting compiler instead of the standard one.

The meat of instrumentation happens as a source to source transformation after
the preprocessor and before the real C compiler. However, we actually need to affect
all stages of compilation:

before preprocessing (cpp0): Pull in extra headers to declare or define various con-
structs used by instrumented code. For fixed content it is easier to use fixed
headers rather than synthesizing the needed constructs programmatically within
the instrumentor.

before compilation (cc1): Add sampled instrumentation as a source-to-source trans-
formation. Emit additional static site information into temporary files for use in
next step.

after assembly (asm): Fuse extra static site information from temporary files into the
assembled object file.

before linking (ld): Pull in extra libraries containing common runtime support code
and data used by instrumented programs.

We use GCC’s -B <path> flag to specify an alternate directory in which to
find the compiler stages. Custom scripts in that directory named cc1 and asm do the
extra “before compilation” and “after assembly” work and invoke the corresponding
native compiler stages as appropriate.

We also use GCC’s -specs=<file> flag to augment (but not replace) the stan-
dard option specs file with one of our own. An option specs file, or simply “spec-
file,” determines how GCC parses its command line arguments. We can add flags
of our own, request temporary file names, and so on. A specfile is essentially a tiny
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domain-specific language for tweaking the command lines used for the various com-
piler stages. Using this facility we are able to take care of our “before preprocessing”
and “before linking” needs by augmenting the cpp0 and ld command lines without
actually replacing those stages with custom scripts of our own.

Starting in release 3.3, GCC has moved away from having a standalone cpp0
preprocessor stage. Instead the preprocessor is integrated into the main cc1 C com-
piler. On platforms without a cpp0, our replacement cc1 script invokes the real cc1
twice: once to preprocess the original source code and a second time to compile the
transformed source after instrumentation has been added.

3.1.1 Static Site Information

While the main “before compilation” task is to inject instrumentation code, this phase
also produces static reference information about each instrumentation site. This in-
formation includes each site’s source file name, line number, host function, control
flow graph node, and other properties specific to the instrumentation scheme be-
ing used. When decoding feedback reports, this information is used to tie predicate
counts back to source level features understood by the programmer. Our experience
is that maintaining this information external to the corresponding object file is brit-
tle, as existing application build scripts often move or rename object files during the
build process. Therefore, we fuse the static site information into the assembled object
file by storing it in several custom ELF sections.

When the linker combines several object files, it pads each unknown section out
to some fixed modulus and then concatenates all same-named sections in link order.
We represent our static site information in a way that remains valid under null-byte
injection and concatenation. Thus each instrumented executable, shared library, or
plugin is self describing, with complete static information for all of its own instru-
mentation sites. Our extra sections are flagged as debug information, which means
that they will be stripped out along with other debugging information during post-
build packaging. We retain a copy locally to assist in report decoding, but end users
do not need to download and store this extra information on their own machines.

3.2 Libraries and Plugins

Post-run reporting would be easy for an application that consisted of a single object
file. We would simply write out the predicate counters in the order in which they
appear in that file, and that list would constitute a complete report.

However, as seen in Table 3.1, many applications involve multiple object files
in the form of shared libraries, plugins, or both. Note that this table counts only
those shared libraries and plugins that are part of the source code of the applica-
tion; additionally, there generally will be other shared libraries and plugins that are
resident only on the end user’s machine. Thus, the running environment is a mix of
code that has been instrumented by CBI and code that we have never seen before.
Shared libraries are also interesting because they may be used by other applications
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that we have not instrumented. Thus, not only must instrumented applications cope
with uninstrumented code, but instrumented code must cope with finding itself in an
uninstrumented application.

An orthogonal set of problems arises from static linking and dynamic loading.
Our system does not have control over the linker and cannot assume that object
files appear in any particular order. Plugins may be loaded late and unloaded at any
time. If an instrumented plugin is about to be unloaded, we must capture its part
of the feedback report immediately, because once it is unloaded its global predicate
counters vanish from the address space and can no longer be accessed.

Our solution to all of these problems is to make each object file self-managing,
with some initialization code that runs when it is loaded, and finalization code that
runs when it is unloaded. For objects that are part of the main application binary,
the initialization code runs early in program execution, before main. The finalization
code runs after main returns or after exit is called. Shared libraries are similar. For
plugins, the initialization code runs within dlopen after the plugin has been mapped
into memory. Plugin finalization code runs within dlclose just before the plugin is
removed from memory. Each object file also maintains its own instrumentation state;
in particular, each object file maintains its own predicate counters.

All instrumented code shares a small amount of global state, such as the next-
sample countdown and a random number generator. This state is initialized using the
same early-execution facilities just before any instrumented object file is initialized.
If the first piece of instrumented code is an external plugin, then the global shared
state will be initialized when that plugin is first loaded. Thus, instrumented code
still behaves as intended even when loaded up by an otherwise uninstrumented host
application.

Self-management works well, but there is one situation in which we need global
knowledge of the loaded object files. Finalization code does not run after a crash.
Thus if the program receives a fatal signal, we must immediately gather the pred-
icate counters from each loaded object file for the feedback report. We maintain a
doubly-linked list of loaded object files, and the initialization/finalization code for
each object file adds/removes that file from this list. Thus at any moment in time the
application has a central registry of all instrumented, currently loaded object files.

We have also given some attention to the fact that this global registry could itself
be corrupted by a buggy program. We maintain a global count of the expected size of
the global registry. When walking the list in a signal handler, we use the counter to
decide when to stop even if we have not reached the end of the list data structure. This
extra check prevents an infinite loop if a memory error in the application introduces
a cycle into the doubly-linked list. The global registry can be damaged in other ways
by a misbehaving program, of course, but avoiding cycles is the most important case
to handle.

The complications in checking for a corrupted global registry are just an example
of the general problem that it is not possible to completely isolate program instru-
mentation from the program itself in unsafe languages such as C and C++. As a result
it is necessary to sanity check feedback reports at the central server and discard any
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that are ill-formed. We do actually receive ill-formed reports, but the number is only
a tiny fraction of all reports.

3.3 Threads

Nearly half of the applications listed in Table 3.1 are multi-threaded. Our CBI system
maintains three kinds of global runtime data that need special attention in such soft-
ware. In each case thread-safety can hurt performance, so we only take these extra
measures if in fact the application is multi-threaded (e.g., if the compiler’s command
line contains the GCC -pthread flag).

3.3.1 Next-Sample Countdown

The most obvious piece of shared state is the next-sample countdown. In a multi-
threaded system, the global variable holding this next-sample countdown would be
a source of high contention among threads. Furthermore, our practice of caching the
global countdown in local variables can easily lead to the same sort of coordination
complications present in any multiprocessing system with per-processor caches.

A simple solution to this problem is to give each thread its own, independent
countdown variable. This duplication is equivalent to giving each thread its own coin
to toss. The behavior of the system with per-thread countdowns is indistinguishable
from having a single global countdown, but avoids locking.

Enacting this plan requires compiler support. We use the __thread storage qual-
ifier to declare thread-specific storage. This qualifier is a GCC extension and also
requires support from the POSIX threading runtime, C library, and runtime loader.
We also must alter thread creation so we can initialize the new thread’s global state.
We use the --wrap flag provided by the GNU linker to replace pthread_create
with our augmented version.

3.3.2 Predicate Counters

The second class of data that requires special handling in multi-threaded applications
is the predicate counters. Recall that the predicate counters keep track of how often
a particular predicate at a particular line of code is observed to be true or false.
For efficiency we use low sampling rates, such as once every hundred times (on
average, randomized) that the line of code associated with the predicate is executed.
Therefore predicates are tested rarely and any individual counter is accessed rarely
even by a single thread. Consequently, we maintain only one copy of each predicate
counter, shared by all threads. The critical operation on these counters, an increment
by one, is so basic that every CPU architecture has some way of doing it atomically
without resorting to heavyweight locking. For example, on the popular Intel IA-32
(a.k.a. x86) architecture, a LOCK-prefixed INC instruction gives exactly the desired
behavior [35].
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3.3.3 Compilation Unit Registry and Report File

The third class of data that must be protected from concurrent access includes the
global registry of compilation units and the report file. These structures are only ac-
cessed when instrumented code is loaded or unloaded from the program’s address
space. Contention is expected to be low, and the performance impact of any rea-
sonable solution small. We guarantee exclusive access by guarding each of these
structures with its own conventional mutual exclusion lock.

3.3.4 Time Stamp Clock

The global clock used when time stamping samples (Sect. 2.2.3) is accessed every
time a sample is taken, not every time a site is reached. Thus contention, while high,
is lower than it would be for a shared global next-sample countdown. Our current
implementation guards the clock with a conventional mutual exclusion lock. This
design has the unfortunate effect of putting lock operations into the main sequence
of program operations. The positive effect is that we retain a single, globally agreed
upon clock for all samples in all threads. A possible alternative approach would be
to use per-thread clocks akin to the per-thread next-sample countdowns discussed
earlier. This design removes locks but sacrifices global ordering. Techniques for cre-
ating partially or totally ordered logical clocks in asynchronous distributed systems
may also be applicable here.

3.3.5 Performance Evaluation

Table 2.1 and Fig. 2.2 used non-thread-safe instrumentation. Figure 3.1 shows how
overheads grow or shrink when thread-safe instrumentation is used. (The underlying
benchmarks used here are still single-threaded.) We note considerable increase in
overhead at dense sampling rates and with the aggressive scalar-pairs instrumenta-
tion scheme. At sparser rates the effect is smaller but the trend remains. Thread-safe
instrumentation does incur a performance cost. The fact that the cost is largest for
the densest sampling rates suggests that the atomic increment instructions are a bot-
tleneck. The problem may not be with the instructions themselves, but rather with
the C compiler’s ability to optimize code around them. We inject the increments
using GCC extensions for inline assembly language. There are limits to how much
information we can provide to the GCC optimizer about the behavior of these assem-
bly fragments. To the extent that GCC treats the fragments as semantically opaque,
GCC’s optimizer must be more conservative than it would be if given pure C code.
An instrumentor implementation based on binary rewriting would avoid this problem
and therefore should be able to substantially reduce the cost of thread safety.

3.4 Privacy and Security

We have argued that the most important program behaviors are those exhibited by
deployed software in the hands of users. However, any scheme for monitoring soft-
ware post-deployment necessarily raises privacy and security concerns. The issues
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Fig. 3.1. Change in overhead with thread-safe instrumentation. Positive numbers indicate
larger overhead relative to typical configuration.

are complex and as much social as technical. However, our approach can only suc-
ceed if users feel safe contributing to the shared data pool. Thus, addressing these
concerns is both a moral and a practical imperative.

The experiences of Mozilla and Netscape with crash feedback systems may be
illustrative. We have met with members of the Netscape Talkback Team, a group of
quality assurance engineers who manage crash reports from the automated feedback
system. Considerable effort has gone into designing the client side of this system so
that users are fully informed. The system is strictly opt-in on a per-failure basis, or
may be disabled entirely. The user may optionally examine the contents of the crash
report, and no information is ever sent to Netscape without explicit authorization.
Figure 3.2 shows the sort of information presented each time Netscape or Mozilla
has crash data to submit.

Not all users will read or understand these assurances. Even so, there are some
technical measures we can take to protect the privacy of even non-technically savvy
users. The very nature of the sampling process itself affords a degree of anonymity.
We collect a small bit of information from many, many users; any single run has little
revelatory power.
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The Netscape Quality Feedback Agent is a feature that gathers predefined technical
information about Communicator and sends it back to the Netscape software develop-
ment team so they can improve future versions of Communicator.

. . .
No information is sent until you can examine exactly what is being sent.
. . .
Information gathered by this agent is limited to information about the state of Com-

municator when it has an error. Other sensitive information such as web sites visited,
email messages, email addresses, passwords, and profiles will not be collected.

All information Netscape collects via this agent will be used only for the purposes
of fixing product defects and improving the quality of Netscape Communicator. This
data is for internal diagnostic purposes only and will not be shared with third parties.

For more information on Netscape’s general privacy policy, go to: <http://home.
netscape.com/legal_notices/privacy.html>

Communicator activates the agent dialog box when a problem occurs, or when it has
gathered information that Netscape needs to improve future versions of Communicator.

. . .
If you prefer to disable the agent, you may do so here:

Fig. 3.2. Privacy assurances as used in Netscape Quality Feedback Agent

Some data, or some parts of execution, may be so sensitive that even this diffuse
information leakage is unacceptable. Several type-based analyses under the broad
heading of secure information flow [7, 60, 64] may be helpful here. Such systems
statically identify parts of a program that manipulate sensitive data; we can avoid
inserting instrumentation that reveals such values. Of course, this blacklisting will
make it difficult to track bugs in security-sensitive parts of an application, but that
trade-off is always present: one can only fix bugs about which the customer is willing
to provide useful information.

A statistical approach designed to cope with noise offers some protection against
malicious users who might try to poison the central database with bogus data, or
overwhelm it with data representing the particular bugs they wish to see fixed. Recent
work on protecting privacy and preventing abuse in collaborative filtering systems
may also be applicable [10, 13].

3.5 User Interaction

When a user launches an instrumented application, he does not run the instrumented
binary directly. Instead, we install a wrapper script in the expected location (e.g.,
/usr/bin) and put the instrumented binary elsewhere. The wrapper script has sev-
eral responsibilities: it performs all user interaction that goes beyond what the un-
derlying application would normally do, and it collects the raw feedback report from
the instrumented application, packages it for transit, and sends it to the report collec-

http://home.netscape.com/legal_notices/privacy.html
http://home.netscape.com/legal_notices/privacy.html
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Fig. 3.3. First-time opt-in dialog box

tion server along with other information such as program outcome. In this way we
avoid adding GUI infrastructure and encrypted networking support to the applica-
tions themselves. Also, the script can be in a different language, Python, which has
excellent library support for both networking and desktop interaction.

When the wrapper script starts up, it checks whether the user has run an in-
strumented version of any application before. If not, it presents the first-time opt-in
dialog box shown in Fig. 3.3. The dialog box briefly describes the goals of the project
and the consequences of participating or not, and lets the user decide what to do. The
logo icon and highlighting of the yes/no explanatory text change to reflect the user’s
current choice. A hyperlink button links to the project web site for more information
[39]. This dialog box is initially presented in the background, and the real applica-
tion launched without waiting for a reply. On this first run, the application reports
no data. Once the user has selected yes or no, that preference is remembered and the
first-time opt-in dialog box is not shown on subsequent runs, though it is possible to
change the preference later using a distinct sampler control panel.

Also in the background, the wrapper posts a small status icon in the desktop sta-
tus bar notification area. This icon provides a visual reminder that an instrumented
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(a) Status icon, enabled and
disabled

(b) Status icon popup menu

(c) Preferences control panel

Fig. 3.4. Additional graphical user interface elements

application is currently running. It provides a simple pop-up menu with a toggle to
globally disable or enable sampling. The status icon changes depending on whether
sampling is enabled or disabled globally, and remains present as long as at least one
instrumented application is running. A second menu item launches the sampler con-
trol panel that allows for more detailed customization of data collection preferences.
These additional graphical user interface elements are shown in Fig. 3.4.

The opt-in dialog box, status icon, and control panel work together to keep the
user fully informed and fully in control. Additional configuration management hooks
let system administrators change both defaults as well as mandatory, locked-down
settings. These settings can include the sampling density, the address of the report
collection server, and whether reporting is enabled for all or selected applications.
Tracking of user behavior is a delicate matter, so users and their system administra-
tors must be able to adapt the system to local needs and concerns.

Because the wrapper script launches the instrumented binary as a subprocess,
it can also check that subprocess’s exit status (either a result code or a fatal sig-
nal), which is included in the report uploaded to our feedback collection server. The
wrapper script compresses the raw feedback report for transit using gzip-compatible
compression. Compression is a huge benefit, as reports are mostly zeros and com-
press very well. The average compression of the reports we have received is 96%;
Table 3.2 shows the range of report sizes we have received by application. The largest
reports are less than forty kilobytes, which can be uploaded over even a slow modem
connection in seconds.

Before submitting a report, the wrapper checks once more whether sampling is
enabled both globally and for this application. If the user changed his or her mind
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Table 3.2. Feedback report sizes

Size in Bytes

Application Min Mean Max

EVOLUTION 704 17,674 39,863
GAIM 1,786 12,072 27,809
THE GIMP 13,316 18,913 32,050
GNUMERIC 6,661 8,786 15,876
NAUTILUS 2,426 4,330 11,572
RHYTHMBOX 332 2,296 8,273
SPIM 198 833 2,184

after program launch, this second check gives the user a second chance to quash an
unwanted feedback report before it reaches the collection server.

A report is submitted using an HTTP POST request across an encrypted SSL
connection. Each HTTP request can also have a response from the server. Ordinarily
the collection server does not give any response beyond a success code. However, if
the server does give a response, the wrapper script receives it and presents it to the
user as an HTML page. This feature might be used, for example, if a critical security
issue were found requiring immediate upgrades.

The HTTP reply can also include a few special reply headers that update the
local sampling configuration on the client. We have the ability to promote a different
destination URL for future reports, which may be useful if we need to relocate the
collection server. We can change the sampling density from its default of 1/100, which
may be useful if performance problems arise. We can also issue a “poison pill” that
turns off sampling for future runs of the application. This facility is intended as a
shutoff should the Cooperative Bug Isolation project be discontinued at some future
date (a feature we learned would be useful from the prior experience of Elbaum and
Hardojo [17]), and it might also be used to suppress future reports from individual
misbehaving users. So far we have not needed any of these facilities.

3.6 Status of the Public Deployment

We conclude with some discussion of our experience thus far with our public de-
ployment of the applications listed earlier.

3.6.1 Resource Requirements

One concern is that our approach adds a great deal of new code to an application;
in fact, binaries will often be at least twice as large as the original, uninstrumented
program. However, the growth in disk footprint is considerably smaller if one con-
siders the entire package that comes with a typical large application, and in fact the
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Table 3.3. Number of reports received to date

Application Total Good Error Crash

EVOLUTION 1,889 1,780 65 44 (2%)
GAIM 858 730 77 51 (6%)
THE GIMP 219 213 3 3 (1%)
GNUMERIC 294 275 2 17 (6%)
NAUTILUS 1,635 1,404 217 14 (1%)
RHYTHMBOX 1,520 1,326 69 125 (8%)
SPIM 1,066 393 670 3 (0%)

executable code is often a relatively small percentage of the total distribution. For
the applications we have instrumented, downloaded packages are between 13% and
49% larger and the installed footprint on disk grows between 13% and 71%. The
actual application binaries are between 74% and 304% larger than in the original
distribution. Thus far we have received no complaints about package sizes, either
downloaded or as expanded onto disk.

Another potential issue is application performance, but thus far we have received
no complaints about the performance of any of our instrumented applications. We
use 1/100 sampling, which apparently is sparse enough; we probably could have sam-
pled even more densely for interactive applications that spend most of their time
waiting for the user to do something. However, even these applications do have CPU-
intensive phases, such as when RHYTHMBOX is loading up a library with thousands
of music files or when GNUMERIC is recalculating a very large spreadsheet.

3.6.2 Reporting Trends

Table 3.3 summarizes the current state of the feedback data for each of our instru-
mented applications. The total number of valid feedback reports received so far is
broken out into good runs, runs that exited with a non-zero error status, and runs
that ended in a crash due to a fatal signal. Note the large variation in crash rates,
from 0% (SPIM) to 8% (RHYTHMBOX). These overall failure rates may seem high,
but they are well in line with rates observed in commercial software. A study of
1.3 million business computers found that 8% of Microsoft Windows sessions ended
in failures requiring system reboots. Newer may not be better: the overall 8% rate
breaks down as 3% for Windows NT, 4% for Windows 2000, and 12% for Windows
XP [46].

There is both good news and bad news in the figures of Table 3.3. The bad
news is that we have not yet received enough reports to carry out statistically sig-
nificant analysis of the results, based on our previous experience with studies done
“in the lab” running applications on synthetic data to simulate a large user commu-
nity. Based on case studies in given in Chap. 4, we need tens of thousands of runs
with our current methods to achieve accurate analysis of the results. This is at least
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Fig. 3.5. Reports received per month and application

ten times the number of reports we have received to date for any of these applica-
tions. Our situation here reflects an inherent aspect of CBI and similar approaches,
which is that these methods work well only beyond a certain minimum scale.

The good news is that these applications do crash, indicating to us that there is
potential to improve the state of the software given enough users participating in CBI.
In addition, we have enough data to demonstrate that the complete system works,
from instrumenting code through gathering of reports, and we continue to receive
new feedback reports daily. We are only at the beginning of this experiment and have
not yet invested much effort in attracting users. The next step in our experiment will
be to find ways to recruit enough users to test the advantages of CBI for large user
communities of complex applications.

Popularity of Applications

Figure 3.5 shows how many reports have been received each month for each applica-
tion since the public deployment began. The public deployment began with just four
applications: EVOLUTION, GAIM, THE GIMP, and NAUTILUS. Other applications
have been added over time. RHYTHMBOX was first made available in October of
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2003 and quickly became one of our most heavily used (and most unstable) offer-
ings. We attribute this popularity to several related factors:

• As is common in the open source community, the RHYTHMBOX developers do
not make binaries available directly. They only provide source.

• RHYTHMBOX has many dependencies on external shared libraries. In practice,
this complexity makes RHYTHMBOX difficult for novice users to build from
source.

• RHYTHMBOX is a fairly high profile project. It is under very active development
and fills a longstanding need for music library management on the Linux desktop.

• Until recently, the popular Red Hat Linux distributions did not include RHYTHM-
BOX binaries.

• At our request, the RHYTHMBOX web site suggests that users seeking binaries
use those available from our Cooperative Bug Isolation project page.

These factors combine to create demand for RHYTHMBOX binaries that our
project is uniquely well positioned to fill. Several people have mentioned to us that
they use our RHYTHMBOX builds simply because that is the most convenient way to
stay current with new releases. In short, we found a niche.

EVOLUTION and NAUTILUS are an interesting counterpoint. These applications
are standard parts of nearly all modern Linux distributions. Our instrumented re-
builds provide no direct benefit to the user in the form of newer code or added func-
tionality. Yet these are our two most heavily reported applications.

EVOLUTION and NAUTILUS are distinctive in being what we might call “ses-
sion” applications: each typically starts when the user logs in and remains running
until the user logs out. We only receive reports from session applications when users
log out or when those applications crash. Therefore we had expected to see fewer
EVOLUTION and NAUTILUS reports, and to see higher crash rates in the reports we
did receive. In fact, the opposite is the case. What these two applications lack in
start/stop cycles they make up for in ubiquity. A user might never run GNUMERIC

during a given session, but if the user has logged in at all, then we will get one NAU-
TILUS report at the end of that session.

SPIM is the most recent addition to the application pool, first posted in Septem-
ber 2004. The sharp spike at the right edge of Fig. 3.5 shows that it has recently
become extremely popular. This sudden popularity seems odd for such a specialized
application. SPIM is a MIPS32 simulator: not the sort of thing most users need on
a daily basis. By design we do not know who our users are; we do not even record
the originating IP address of each report. However, the HTTPS server that receives
reports keeps a rotating four-week access log. Inspection of this log, along with a
few web searches, strongly suggests that our SPIM spike is associated with multiple
students at the University of Innsbruck in Austria taking a class in computer archi-
tecture (Rechnerarchitektur). SPIM is used in this class, and the main SPIM web
page directs Linux users to our project page for SPIM binary downloads. Thus we
see again that referrals from developers’ project pages are an important source of
users for our public deployment.
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Fig. 3.6. Reports received per month and distribution

Popularity of Distributions

Unlike Windows or MacOS, Linux is packaged and released by multiple distributors.
Figure 3.6 shows how many reports we have received each month for each supported
distribution since the public deployment began.

The public deployment initially provided binaries only for Red Hat Linux 9. We
selected this distribution because of its large user base and because of this author’s
familiarity with the technical particulars of that platform. In May 2004 we switched
development to Fedora Core 1 and announced that Red Hat Linux 9 would no longer
be updated.1 We do still receive a significant number of Red Hat Linux 9 reports, pre-
sumably from users who decided to stop upgrading and stay with this well-regarded,
fairly stable distribution.

While Fedora Core 1 saw rapid adoption in May and April of 2004, Red Hat
Linux 9 reports dropped off at the same time. This shift suggests that most of the
Fedora Core 1 users were existing Red Hat Linux 9 users who upgraded rather than
new users joining our project for the first time. We observe as well that the sharp rise

1 Names and numbers are deceiving: Fedora Core 1 is actually the direct successor to Red
Hat Linux 9.
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in Fedora Core 1 reports in July 2004 coincides with a drop-off of RHYTHMBOX re-
ports. Fedora Core 1 includes RHYTHMBOX binaries. Although our builds are newer
and more feature rich, easy availability of vendor-supplied binaries clearly shrank
demand for our rebuilds.

In October 2004 we added support for Fedora Core 2, though we continue to
support Fedora Core 1 as well. The Fedora Core 2 spike at the right edge of Fig. 3.6
coincides with the SPIM spike in Fig. 3.5, so apparently the Austrian computer
architecture students are using Fedora Core 2. It is too early to tell whether other
users are switching or whether new users are arriving. One challenge when adding
new distributions is that it is difficult to stir up as much interest as we got with
the first public releases. Our August 2003 launch saw articles in Slashdot, Linux
Weekly News, CNET News.com, and other high profile online technology news fora.
Subsequent new distribution announcements have been limited to mailing lists for the
relevant distributions and applications, which are much smaller audiences.
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Techniques for Statistical Debugging

What is luck? Luck is probability taken personally. It is the
excitement of bad math.

–Penn Jillette

Thus far we have focused on techniques for collecting sparsely sampled data from
large numbers of users. However, this data is only as good as the sense we can make
of it. This chapter presents several techniques for using sparsely sampled data to
isolate the causes of bugs.

Sampled data is terribly incomplete. With 1/100 sampling, 99% of everything that
happens is not even seen. Thus, we do not give strict causes and effects as one might
look for using a symbolic debugger. Instead we use statistical models to identify
those behaviors that tend to be strongly predictive of failure over many runs. We
refer to this body of techniques as statistical debugging. Statistical debugging reaps
the benefits of the Bernoulli sampling transformation developed in Sect. 2.1.1. While
the data is incomplete, it is incomplete in a fair, statistically unbiased way. Thus the
observed data is a noisy but representative sample of the complete behavior, and
failure trends identified in the former are equally applicable to the later.

Section 4.1 defines some basic notation and terminology that we will use through-
out the remainder of this chapter. In Sect. 4.2 we describe an algorithm for isolat-
ing single, deterministic bugs using a process of elimination. Section 4.3 extends
our scope to non-deterministic bugs using a general-purpose statistical regression
model. This approach has certain limitations, which we discuss in greater depth in
Sect. 4.3.4 and Sect. 4.4. Better understanding of these limitations leads us to de-
velop an improved algorithm in Sect. 4.5 that combines statistical ranking techniques
with an iterative bug elimination process to manage multiple unknown deterministic
and non-deterministic bugs. The ranking and iterative elimination is our best known
algorithm to date. Section 4.6 offers several case studies demonstrating how the al-
gorithm has been used to successfully isolate both known and previously unknown
bugs in real applications.

4.1 Notation and Terminology

Let P represent the set of all fundamental and inferred predicates for a given pro-
gram. A feedback report R consists of one bit indicating whether a run of the program
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succeeded or failed, as well as a vector with one counter for each predicate P ∈ P .
Let R(P) represent the counter value for P in R. If P is observed to be true during at
least once run R, then R(P) > 0; if P is never observed to be true during run R, then
R(P) = 0.

Predicates arise from instrumentation sites. Let S be an instrumentation site. As a
notational shorthand, define the count of a site R(S) to be the sum of the counts of its
constituent fundamental predicates. Note that for all of the instrumentation schemes
described in Sect. 2.2, the set of fundamental predicates arising from a site form a
partition of the set of all possible program states at that site. Thus, one observation
at a site S entails one true observation of exactly one fundamental predicate P ∈ S.
Conversely, if R(S) = 0, then site S must never have been observed.

Let B denote a bug (i.e., something that causes incorrect behavior in a program).
We use B to denote a bug profile, i.e., a set of failing runs (feedback reports) that
share a cause of failure. The meaning becomes clear in context. The union of all bug
profiles is exactly the set of failing runs, but note that Bi ∩B j �= /0 in general; more
than one bug can occur in some runs.

A predicate P is a bug predictor (or simply a predictor) of bug B if whenever
R(P) > 0 then it is statistically likely that R ∈ B (see Sect. 4.5.1). The goal of sta-
tistical debugging is to select a small subset A ⊆ P such that A has predictors of all
bugs. Ideally we would also like to rank the predictors in A from the most to least
important according to some reasonable definition of “importance.” The set A and
associated metrics are then available to engineers to help speed the process of finding
and fixing the most serious bugs.

It is occasionally useful to distinguish deterministic from non-deterministic bugs.
A bug is deterministic with respect to a predicate P if whenever P is true, the program
is guaranteed to crash at some future point. A bug is non-deterministic with respect
to a set of program predicates if it is not deterministic for any predicate in the set
(i.e., none of the considered predicates perfectly predicts program crashes).

4.2 Predicate Elimination

We begin with automatic isolation of deterministic bugs with the additional simpli-
fying assumption that each program under analysis has only one bug. Deterministic
bugs are quite common, though they are generally easier to find and fix using any
method than non-deterministic bugs (see Sect. 4.3).

4.2.1 Instrumentation Strategy

As a case study in finding deterministic bugs we take release 1.2 of the CCRYPT

encryption tool. This version is known to contain a bug that involves overwriting
existing files. If the user responds to a confirmation prompt with EOF rather than yes
or no, CCRYPT crashes.

The EOF sensitivity suggests that the problem has something to do with CCRYPT’s
interactions with standard file operations. In C, these functions commonly return
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values to indicate success or failure. We therefore choose to instrument CCRYPT

using the returns instrumentation scheme discussed in Sect. 2.2.2. Thus, when an
instrumented run terminates, we can examine any function call of interest and ask
how often that call was observed to return a negative, zero, or positive value.

For CCRYPT, there are 570 call sites of interest, for 570× 3 = 1,710 counters.
Each counter corresponds to a single predicate that is hypothesized to behave differ-
ently in successful versus crashed runs. Specifically, we pose the problem as follows:

Assume that predicates capture incorrect behavior. That is, assume that each
predicate P should always be false during correct execution. When P is true,
the program either fails (a deterministic bug) or is at increased risk of failing
(a non-deterministic bug).

If we eliminate all predicates for which this hypothesis is disproved by ob-
served runtime behavior, then the predicates that remain describe the conditions un-
der which the program fails.

4.2.2 Elimination Strategies

We make no effort to restrict instrumentation to known system or library calls, nor
do we distinguish functions that return status codes from those that do not. Most of
those 1,710 predicates, then, have no bearing on program success or failure. Given a
set of runs, we can discard irrelevant predicates using a set of elimination strategies:

〈Elimination by universal falsehood〉: Disregard any predicate P such that R(P)=
0 on all runs R. P likely represents a predicate that can never be true.

〈Elimination by lack of failing coverage〉: Disregard all predicates for a site S if
R(S) = 0 on all failed runs R. Because one counter in each triple must always
be true for any sample, these predicates likely arise from an instrumentation site
that is not even reached in failing executions.

〈Elimination by lack of failing example〉: Disregard any predicate P such that
R(P) = 0 on all failed runs R. P likely represents a predicate that need not be
true for a failure to occur.

〈Elimination by successful counterexample〉: Disregard any predicate P such
that R(P) > 0 on at least one successful run R. P must represent a predicate that
can be true without causing a subsequent program failure.

We characterize these as strategies because they are subject to noise from random
sampling, and also because not all are equally applicable to all bugs. For example,
elimination by 〈successful counterexample〉 assumes that the bug is deterministic.
The other three strategies do not make this assumption, but do require enough runs
so that any predicate that is ever true is likely to have been observed true at least
once. Note that these strategies are also not independent: 〈universal falsehood〉 and
〈lack of failing coverage〉 each eliminate a subset of the counters identified by 〈lack of
failing example〉. Elimination strategies also vary in which kinds of runs they exploit:
〈successful counterexample〉 considers only successful runs; 〈lack of failing example〉
and 〈lack of failing coverage〉 consider only failures; 〈universal falsehood〉 uses both.
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4.2.3 Data Collection and Analysis

In lieu of a large user community, we generate many runs artificially in the spirit
of the Fuzz project [43]. Each run uses a randomly selected set of present or absent
files, randomized command line flags, and randomized responses to CCRYPT prompts
including the occasional EOF.

We have collected 2,990 trial runs at a sampling rate of 1/1,000; 88 of these end in
a crash. Applying each elimination strategy independently to the counter traces:

〈Universal falsehood〉 discards 1,569 counters that are zero on all runs, leaving
141 candidate predicates.

〈Lack of failing coverage〉 discards 526 counter triples that are all zero on all
crashes, leaving 132 candidate predicates.

〈Lack of failing example〉 discards 1,665 counters that are zero on all crashes,
leaving 45 candidate predicates.

〈Successful counterexample〉 discards 139 counters that are non-zero on any suc-
cessful run, leaving 1,571 candidate predicates.

Several factors conspire to drive most counters to zero: the naïve nature of our
guesses, the limited coverage of our automated test suite, and the filtering effect of
sparse sampling. Thus, elimination by 〈universal falsehood〉 looks quite effective at
first glance, while elimination by 〈successful counterexample〉 seems rather poor.
However, these two strategies test disjoint properties and can be combined to good
effect. The combination leaves only those predicates that are sometimes observed
to be true in failed runs but never observed to be true in successful runs. For our
CCRYPT trials, only two predicates meet these criteria:

1. traverse.c:320: file_exists return value > 0
2. traverse.c:122: xreadline return value == 0

Examining the corresponding code shows that these predicates are consistent
with the circumstances under which the bug is reported to occur. This call to
file_exists returns “1” when an output file already exists. A confirmation prompt
is presented, and this call to xreadline returns the user’s reply, or null if the in-
put terminal is at EOF. Inspection of the code immediately following the xreadline
call shows that the programmer forgot to check for the EOF case: he assumes that
xreadline returns a non-null string, and immediately inspects its contents. We have
successfully isolated this (known) bug in CCRYPT, and the fix is clear.

While the file_exists predicate is not itself the cause of the bug, the fact that
it appears on our list is useful information. It represents a necessary condition under
which crashes occur. That may be helpful, for example, if the engineer wishes to
reproduce the bug in-house for further study. Of course, there should be some runs
where file_exists reports that the file exists but xreadline returns a valid re-
sponse from the user and therefore the program does not crash. If the file_exists
call is sampled on any such run, elimination by 〈successful counterexample〉 cor-
rectly determines that this predicate does not imply failure. It will be eliminated
from further consideration, and only the true “smoking gun,” the call to xreadline,
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will remain. Thus we have the ability to identify not only the direct cause of a bug
but also related behaviors that are strongly but imperfectly correlated with failure.
We further explore this idea of broad correlation in Sect. 4.3, where even the buggy
line of code itself does not always cause a crash.

As previously noted, the first three elimination strategies partially overlap, while
the last, 〈successful counterexample〉, is distinct. 〈Universal falsehood〉 and 〈suc-
cessful counterexample〉 only look at successful runs, hence are easily analyzed to-
gether. 〈Lack of failing example〉 in general eliminates the most features, and there-
fore is also a good candidate to combine with 〈successful counterexample〉. Doing
so in the case of CCRYPT leaves us with exactly the same two features, though in
general one might find different results. Elimination by 〈lack of failing coverage〉, on
the other hand, is an inherently weaker strategy: when combined with 〈successful
counterexample〉, we are still left with 86 features.

4.2.4 Refinement over time

In order to gain a better understanding of how the elimination strategies benefit from
increasing the number of runs, we have experimented with randomized subsets of our
complete run suite. We have seen that elimination by 〈successful counterexample〉 is
quite effective when given a few thousand successful runs; how well does it perform
with a smaller suite? We start with the 141 candidate predicates that are ever nonzero
on any run. We assemble a random subset of fifty successful runs and filter the predi-
cate set using elimination by 〈successful counterexample〉. We then add another fifty
runs, and another fifty, and so on in steps up to the full set of 2,902 successful runs.
We repeat this entire process one hundred times to gauge how rapidly one can expect
the predicate set to shrink as more runs arrive over time.

Figure 4.1 shows the results. The crosses mark the mean number of predicates
remaining, while the vertical bars extend one standard deviation above and below
the mean. The short vertical bars in this case tells us that there is relatively little
diversity in each of the hundred random subsets at any given size. The results show
that, on average, 1,750 runs are enough to isolate twenty candidate features, another
500 runs reduces that count by half, and a total of 2,600 runs is enough to narrow
the set of good features down to just five. One would expect more variety in runs
collected from real users rather than an automated script. Greater diversity can only
benefit the analysis, as it would provide more novel counterexamples and therefore
may eliminate more uninteresting predicates more rapidly.

4.2.5 Performance Impact

Instrumenting function return values confounds several of the optimizations pro-
posed in Sect. 2.3. If most function calls are instrumentation sites, and if most func-
tion calls terminate acyclic regions, then most acyclic regions contain only a single
site and we have poor amortization of sampling overhead. Furthermore, CCRYPT is
built one object file at a time, and we must conservatively assume that any cross-
object function call is not weightless. Thus, for much of CCRYPT, our sampling
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Fig. 4.1. Progressive elimination by 〈successful counterexample〉 as successful runs accumu-
late. Crosses mark means; error bars mark one standard deviation.

transformation devolves to a simpler but slower pattern of checking the next-sample
countdown at each and every site.

In spite of this extra work, the performance impact of sampled instrumentation
is minimal. We find that the overhead for 1/1,000 sampling in CCRYPT is less than
4%, and progressively sparser sampling rates shrink the overhead still further. Un-
conditional instrumentation also performs well here, making either reasonable for
this particular application. In the next section, though, we consider a more invasive
instrumentation strategy that requires sampling to keep overhead under control.

4.2.6 Limitations and Insights

Predictor selection using predicate elimination strategies is fundamentally dependent
upon two assumptions: (1) that there is exactly one bug, and (2) that there is at least
one completely deterministic predictor for this bug. If assumption (1) is untrue, then
presumably even a perfect predictor for one bug will fail to consistently predict other
bugs, effectively violating assumption (2). If assumption (2)is untrue, then even a
single run in which the predictor was observed true but the program succeeded any-
way will suffice to eliminate the predictor by 〈successful counterexample〉. Thus if
there is no 100% deterministic predictor eventually all predicates will be eliminated.
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Relaxing these requirements requires substantially different approaches, and we
explore other options in the sections that follow. However this algorithm is a use-
ful starting point because it serves to illustrate several key concepts common to all
statistical debugging approaches. Chief among these is the idea of rapidly paring
down a large set of mostly uninteresting predicates to find a much smaller set of
true bug predictors. Also, it is useful for bug isolation algorithms to be progressive,
yielding rough answers for few runs and successively more precise or more confi-
dent information as runs accumulate. Lastly, if we allow for less strict interpretations,
the elimination strategies of Sect. 4.2.2 do describe generally desirable properties of
bug predictors. Predicates that differ between successful and failing runs are inter-
esting; those that do not differ are uninteresting. Good predictors should be true (or
should tend to be true) in failing runs and should be false (or should tend to be false)
in successful runs. Any approach to statistical debugging ultimately depends upon
identifying differences in the behaviors of successful and failed runs.

4.3 Regularized Logistic Regression

In this section we consider the automatic isolation of non-deterministic bugs. Re-
call from Sect. 4.1 that a bug is non-deterministic with respect to a set of program
predicates if no predicate in the set is perfectly correlated with program crashes.
Thus non-determinacy is in part a function of what we choose to observe. If we treat
the implementation of malloc et al. as opaque, then many C heap corruption bugs
become non-deterministic with respect to all observed predicates.

For this case study we use version 1.06 of the GNU implementation of BC, a ba-
sic command-line calculator tool. We find that feeding BC nine megabytes of random
input causes it to crash roughly one time in four from, as it turns out, a previously un-
known buffer overrun error. Since BC sometimes terminates successfully even when
it overruns the buffer, this bug is non-deterministic.

The scalar-pairs instrumentation scheme described in Sect. 2.2.2 can be useful
for detecting boundary condition violations associated with buffer overruns. We in-
strument BC using the scalar-pairs scheme with variable-to-variable and variable-to-
zero comparisons only. For BC this scheme induces 10,050 sites, or 30,150 predicate
counters in all. The vast majority of these are of no interest: either they compare com-
pletely unrelated variables, or they express relationships that behave identically in
both successful and failed runs. The challenge is to find the few predicates that mat-
ter. Because the bug is non-deterministic, if we have enough runs no predicates will
satisfy elimination by 〈successful counterexample〉. Therefore we set aside this elim-
ination strategy in favor of statistical modeling to identify behavior that is broadly
correlated with failure.

4.3.1 Crash Prediction Using Logistic Regression

To find important but possibly non-deterministic predictors, we recast bug iso-
lation as a statistical analysis problem. Each run of BC constitutes one sample
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point consisting of 30,150 observed features (counters) and one binary outcome
(0 = succeeded,1 = crashed). Given numerous data points (sampled runs), we want
to identify a subset of our 30,150 features that predict the outcome. This problem
is equivalent to the machine learning problem of learning a binary classifier with
feature selection, i.e., using as few input features as possible.

In the classification setting, we take a set of data with known binary output (a
training set), and attempt to learn a binary classifier that gives good predictions on
a test set. The learning process usually involves additional parameters whose values
can be determined using a cross-validation set. In our case, the end goal is to nar-
row down the set of features. Hence our method must balance good classification
performance with aggressive feature selection.

A binary classifier takes feature values as inputs, and outputs a prediction of
either 0 or 1. Logistic regression [28] is a method of learning a binary classifier where
the output function is assumed to be logistic. The logistic function is a continuous
“S”-shaped curve approaching 0 on one end, and 1 on the other. The output can
be interpreted as a probability measure of how likely it is that the data point falls
within class 0 or 1. Quantizing the logistic function output then gives us a binary
classifier: if the output is greater than 1/2, then the data point is classified as class 1
(a crash), otherwise it falls under class 0 (a successful run). Feature selection can
be achieved by regularizing the function parameters to ignore most input features,
forcing it to form a model that predicts success or failure using just a small selection
of sampled features. Regularization is important for our purposes because we expect
that most of our features are wild guesses, but that there may be just a few that
correctly characterize the bug.

While other techniques for combined classification and feature selection exist,
few of them are particularly well-suited for this problem. Some methods [24, 58] cal-
culate a univariate correlation coefficient independently for each feature; other meth-
ods, such as decision trees [6], are more computationally intensive. In our dataset,
the features are clearly not independent of each other, and the size of the problem
can potentially be too large for more computationally intensive methods. Further-
more, logistic regression is a discriminative classification method, and thus does not
make any assumptions about the underlying distribution of the input. This property
is crucial since our features arise from a decidedly artificial process and would be
difficult to characterize using simple distributions.

Suppose our training set D consists of M data points (x1,y1), . . . ,(xM,yM), where
each xi ∈ R N denotes a vector of input predicate counters, and each yi = {0,1}
denotes the corresponding output label. To learn a good classifier, we can maximize
the log likelihood of the training set, defined as follows:

LL(D) =
M

∑
i=1

[yi logPr(Y = 1|x)

+(1− yi) log(1−Pr(Y = 1|x))].
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Here the output labels yi are used as indicator functions to zero out exactly one of
the two terms in each summand. In logistic regression, the distribution Pr(Y = 1|x)
is modeled as the logistic function µβ̃(x) with parameters β̃ = 〈β0 ∈ R ,β ∈ R N〉.

Pr(Y = 1|x) = µβ̃(x) =
1

1 + exp(−β0 −βT x)
.

The logistic parameters β0 and β take on the respective roles as the intercept
and slope of the classifier, and essentially weigh the relative importance of each
feature in the final outcome. We expect most of the input features to have no influence
over the success or failure of the program, so we place an additional constraint that
forces most of the β’s toward zero. This constraint is implemented by subtracting a
penalty term based on the �1 norm ‖β̃‖1 = ∑M

j=0|β j|. We can tune the importance
of this regularization term through a regularization parameter λ. The penalized log
likelihood function is:

LL(β̃|D,λ) =
M

∑
i=1

[yi logµβ̃(xi)+ (1− yi) log(1−µβ̃(xi))]

−λ‖β̃‖1.

An assignment of β coefficients that maximizes this function represents a model
that maximizes the fidelity of its predictions while still limiting itself to form those
predictions on the basis of only a small number of features from the complete fea-
ture set.

4.3.2 Data Collection and Analysis

Our BC data set consists of 4,390 runs with distinct random inputs and distinct ran-
domized 1/1,000 sampling. We randomly chose 2,729 runs for training, 322 runs for
cross-validation, and 1,339 runs for testing. Although there are 30,150 raw features,
many can be discarded immediately using elimination by 〈universal falsehood〉: in
the training set 27,242 features are always zero. Hence the effective number of fea-
tures used in training is 2908. (Elimination by 〈lack of failing example〉 can eliminate
another 647 features that are zero for all failed runs. However we find that the pres-
ence or absence of these 647 features does not significantly affect the quality of the
regularized logistic regression results.)

To make the magnitude of the β parameters comparable, the feature values must
be on the same scale. Hence all the input features are shifted and scaled to lie on
the interval [0,1], then normalized to have unit sample variance. A suitable value
for the regularization parameter λ is determined through cross-validation to be 0.3.
The model is then trained using stochastic gradient ascent to reach a local maxi-
mum of the penalized log likelihood. Using a step size of 10−5, the model usually
converges within sixty iterations through the training set. This process takes roughly
thirty minutes in MATLAB on a 1.8 GHz Pentium 4 CPU with 1 GB of RAM.

Once the model has been trained, predicates with the largest β coefficients sug-
gest where to begin looking for the bug. In our case, the top five ranked coefficients
are well-separated in magnitude from the rest, and show an unmistakable trend:
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152 void
153 more_arrays ()
154 {
155 int indx;
156 int old_count;
157 bc_var_array **old_ary;
158 char **old_names;
159

160 /* Save the old values. */
161 old_count = a_count;
162 old_ary = arrays;
163 old_names = a_names;
164

165 /* Increment by a fixed amount and allocate. */
166 a_count += STORE_INCR;
167 arrays = (bc_var_array **) bc_malloc (a_count*sizeof(bc_var_arra...
168 a_names = (char **) bc_malloc (a_count*sizeof(char *));
169

170 /* Copy the old arrays. */
171 for (indx = 1; indx < old_count; indx++)
172 arrays[indx] = old_ary[indx];
173

174

175 /* Initialize the new elements. */
176 for (; indx < v_count; indx++)
177 arrays[indx] = NULL;
178

179 /* Free the old elements. */
180 if (old_count != 0)
181 {
182 free (old_ary);
183 free (old_names);
184 }
185 }

Fig. 4.2. Suspect BC function more_arrays. All top-ranked crash-predicting features point to
large values of indx on line 176.

1. storage.c:176: in function more_arrays: indx > scale
2. storage.c:176: in function more_arrays: indx > use_math
3. storage.c:176: in function more_arrays: indx > opterr
4. storage.c:176: in function more_arrays: indx > next_func
5. storage.c:176: in function more_arrays: indx > i_base

The source code for more_arrays appears in Fig. 4.2. A comment earlier in the
same file suggests that this function is one of a suite of “three functions for increasing
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the number of functions, variables, or arrays that are needed.” The logic is a fairly
clear instance of the buffer reallocation idiom, even to one unfamiliar with the code:
line 167 allocates a larger chunk of memory; line 171 is the top of a loop that copies
values over from the old, smaller array; line 176 completes the resize by zeroing
out the new extra space. As the comment suggests, there are two similar functions
(more_functions and more_variables) nearby that do largely the same thing with
different storage pools. The text of these three functions is nearly identical, but each
uses different global variables (such as a_count versus f_count versus v_count).

The top ranked predicates seem bizarre on first examination, because the vari-
ables they relate do not appear to have any real connection to each other or to
more_arrays. For example, scale tracks significant digits for floating point cal-
culations, while use_math records whether an initial math library is to be loaded.
Why would crashes tend to happen when local variable indx exceeds these seem-
ingly unrelated globals on this particular line? An obvious hypothesis is that indx is
simply unusually large in such cases. If indx is large, then it will tend to be larger
than any number of otherwise unrelated variables. Perhaps crashes occur when the
input to BC defines unusually large numbers of arrays.

Closer scrutiny of more_arrays quickly reveals this hypothesis to be true. The
allocation on line 167 requests space for a_count items. The copying loop on line
171 ranges from 1 through old_count−1. The zeroing loop on line 176 continues
on from old_count through v_count−1. And here we find the bug: the new storage
buffer has room for a_count elements, but the second loop is incorrectly bound by
v_count instead. After a glimpse at the neighboring more_variables function, it is
clear that more_arrays was created by copying and pasting more_variables and
then changing names like v_count and v_names to a_count and a_names. The loop
bound on line 176 was overlooked in the renaming.

The logistic regression model points us at the buggy line, the buggy variable, and
even reveals something of the conditions under which the bug appears. Having found
the bug, it is reasonable to ask whether the statistical analysis could have pointed
at it even more directly. The mistaken use of v_count instead of a_count on line
176 means that a buffer overrun occurs when indx > a_count on line 176. This
condition does correspond to a predicate sampled by our system, but the predicate is
ranked 240th in the trained model. Why was this smoking gun not ranked first?

There are several reasons to consider. Samples are taken randomly, while the
model itself is trained using stochastic gradient ascent. Thus, a degree of noise is fun-
damental to the process. Even crashing is not guaranteed: out of 320 runs in which
sampling spotted indx > a_count at least once, 66 did not crash. Thus, C programs
can “get lucky”, meaning that we do not have a strict overrun =⇒ crash implica-
tion. Manual inspection of the data reveals a high degree of redundancy among many
instrumentation sites within more_arrays, meaning that the model has several fea-
tures to choose from that have equivalent predictive power. Our counters may be too
fine-grained here: we are distinguishing many behaviors that are in fact so tightly
interrelated as to be equivalent.

This bug seems clear enough once found. However it has been present and undis-
covered at least since 1992 (the time stamp on this file in the oldest version of GNU
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Fig. 4.3. Overhead of BC with unconditional or sampled instrumentation

BC that we can find). Many bugs are obvious only once one knows where to look.
The logistic regression results directed us to one misbehaving variable on one line of
code, out of 8910 lines in BC as a whole. Our approach does not automatically find
and fix bugs. But it does suggest where to start looking, and what sort of scenarios
(e.g., unusually large indx) to consider. Although we are still learning about the ca-
pabilities of this system and how to interpret its results, we believe that statistically
guided debugging has the potential to make the process of finding and fixing bugs
more efficient and more responsive to the needs of end users.

4.3.3 Performance Impact

Our BC instrumentation is fairly dense. The leftmost bar in Fig. 4.3 shows that if this
instrumentation is added without sampling, the performance penalty is 13%. A sam-
pling density of 1/100 cuts the penalty in half (6%). At the 1/1,000 density used in our
statistical debugging experiment, the penalty is barely measurable (0.5%). Still lower
densities show small speedups relative to uninstrumented code. This behavior is ap-
parently due to effects such as changes in relative code alignment, cache behavior,
measurement noise, and other unpredictable factors. Thus, we achieved an important
goal: at least for this application, we can sample program behavior at densities that
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allow us to isolate real bugs while imposing an overhead on clients that is so small
as to be unmeasurable in practice.

4.3.4 Limitations and Insights

Regularized logistic regression gives encouraging results for BC, a small program ex-
hibiting a single bug. However, as we worked to apply these methods to much larger
programs under realistic conditions we discovered a number of serious scalability
problems:

• For large applications the set of candidate predicates numbers in the hundreds of
thousands of predicates, many of which are, or are very nearly, logically redun-
dant. In our experience, this redundancy causes regularized logistic regression to
choose highly redundant lists of failure predictors. Redundancy is already evi-
dent in the list of BC failure predictors from Sect. 4.3.2. This problem becomes
much worse for larger programs.

• A separate difficulty is the prevalence of predicates predicting multiple bugs. For
example, for many Unix programs a bug is more likely to be encountered when
many command line flags are given, because the more options that are given non-
default settings the more likely unusual code paths are to be exercised. Thus,
predicates implying a long command line may rank near the top, even though
such predicates are useless for isolating the cause of individual bugs.

• Finally, different bugs occur at rates that differ by orders of magnitude. In reality,
we do not know which failure is caused by which bug, so we are forced to lump
all the bugs together and try to learn a binary classifier. Thus, predictors for all but
the most common bugs have relatively little influence over the global optimum
and tend to be ranked low or not included in the selected predictor list at all.

These problems with regularized logistic regression persist in many variations
we have investigated, including approaches that use nonstandard utility functions to
model the behavior of nondeterministic failures [65]. Analysis of this body of exper-
imental work yielded some key technical insights. In addition to the bug predictors
we wish to find among the instrumented predicates, there are several other kinds of
predicates. First, nearly all predicates (often 98% or 99%) are not predictive of any-
thing. These non-predictors are best identified and discarded as quickly as possible.
Among the remaining predicates that can predict failure in some way, there are some
bug predictors. There are also super-bug predictors: predicates that, as described
above, predict failures due to a variety of bugs. And there are sub-bug predictors:
predicates that characterize a subset of the instances of a specific bug; these are often
special cases of more general problems.

4.4 MOSS: A Multiple-Bug Challenge

When a program contains multiple bugs, the difficulties created by super- and sub-
bug predictors become pronounced. To assess the viability of regularized logistic
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regression in this context we performed an experiment in which we knew the set of
bugs in advance. We chose MOSS [56] as our benchmark program. MOSS is a soft-
ware plagiarism detection service1. It has been available since the late 1990’s and has
several thousand users worldwide. As such, MOSS has many of the characteristics of
real software: it has users who depend on it, it is constantly undergoing revision as
its purpose and the environment in which it runs evolves, and it is complex enough
to be composed of several interacting subsystems.

The choice of how to inject bugs into software can be problematic, as the choice
of bugs to include or exclude can dramatically affect the results. Nearly all of the
bugs were taken directly from the bug logs for MOSS. In some cases the code had
evolved since the original bug was fixed, in which case we had to judge how to
modify the bug to inject it into the code. We also included three bugs that were not
MOSS bugs. One of these is a known bug from another system where there is an
obviously analogous place to add that bug to MOSS (see below). The other two are
duplicates of two different buffer overrun bugs in MOSS. In each case, we restored
the original bug, and then added a second, very similar buffer overrun in a different
place, the purpose being to see if our algorithm could not only detect the overruns,
but also distinguish between them.

We briefly describe the nine bugs we added to MOSS:

1. To correctly report the location of duplicate code MOSS must track line num-
bers. We introduced a bug that causes the number of lines in C-style multi-line
comments to be counted incorrectly. The bug only occurs under a special set
of circumstances: the option to match comments must be on (normally MOSS

ignores comments completely, and that is a separate code path with no bug), the
programs involved must have C multi-line comments, and in addition the posi-
tion of these comments must ultimately affect the output. Note that this bug is
not only non-deterministic in the sense defined in Sect. 4.1, it also does not cause
the program to crash; the program simply generates incorrect output.

2. MOSS has the option to dump its internal data structures in a binary file format
called a database. We removed the check for a null FILE pointer in the case that
the database cannot be opened for writing. This bug is analogous to one reported
in CCRYPT. It is a deterministic bug, and in fact the program crashes almost
immediately after failing to open the file.

3. Loading a MOSS database is complex, as a number of data structures must be
kept in sync. We removed an array bounds update in the database loading routine,
so that even though a database was loaded, the pointer to the end of one array
A was not moved to reflect that new data had been added to the end of A. The
program behaves normally unless a second database is loaded, at which point
the second database at least partially overwrites that portion of the first database
stored in A. This bug has unpredictable effects. Depending on what files are
compared and the contents of the databases loaded, the result might be that the

1 That is, MOSS detects copying in large sets of programs. The typical MOSS user is a pro-
fessor or teaching assistant in a programming course.
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program terminates with correct output, that it terminates with incorrect output,
or that it crashes. This bug was particularly difficult to find originally.

4. We removed a size check that prevented users from supplying command-line
arguments that could cause the program to overrun the bounds of an array. When
this bug is triggered the program may terminate with correct output, terminate
with incorrect output, or crash.

5. For historical reasons, MOSS handles Lisp programs differently from all other
languages. The Lisp processing involves a standard hash table. We removed one
of the end-of-bucket checks, which causes a crash when the program scans to
the end of a hash bucket and tries to dereference a NULL pointer.

6. For efficiency MOSS preallocates a large area of memory for its primary data
structure. When this area of memory is filled, the program should fail gracefully.
We removed the out-of-memory check. The original bug was more complex, but
cannot be reproduced exactly because this portion of the code has been revised.

7. MOSS has a routine that scans an array for multiple copies of a data value. We
removed the limit check that prevents the code from searching past the end of the
array. This bug is another buffer overrun, but of a different kind. First, whether
the overrun occurs is very data dependent and in fact it is difficult to construct a
test case by hand that triggers the bug. Second, the routine in question only reads
past the end of the array (no memory locations are written), so it is quite likely
that the program will succeed in spite of the error. This bug is synthetic (it never
occurred in MOSS) but is derived from bug #8.

8. This bug is a variant on bug #7, in another routine that deals with duplicates,
but bug #8 occurs under an even rarer set of circumstances. In fact, this bug
was never known to have caused a failure in MOSS; it was discovered by a code
review.

9. This bug is a variant of bug #4, but involves a different command-line argument
and a different array.

In summary, the nine bugs are all either real bugs in MOSS or bugs closely related
to real bugs in MOSS or other programs. The bugs range from typical C coding
errors (e.g., NULL pointer dereferences and array overruns) to high-level violations of
a system’s internal invariants (e.g., bugs #1 and #3).

To allow us to measure the accuracy of our techniques we also added code to
MOSS to log when each bug was triggered. We were careful to exclude this code
from the code that was instrumented for sampling, as predicates on the logging code
would be very highly correlated with program failures.

To determine whether a run produced correct output we compare it against the
output from a reference version of MOSS without reintroduced bugs. As suggested
in Sect. 1.4, in practice the labeling of runs as successful or failed might be done by
detecting crashes, by noting internal assertion failures, or perhaps even by direct user
feedback that the output of the program appears incorrect. Our use of a debugged
reference version of MOSS is merely an experimental convenience: an oracle that
makes it possible for us to label large numbers of runs automatically.
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4.4.1 Nonuniform Sampling

Sampling creates additional challenges that must be faced by any bug isolation al-
gorithm. Assume that P1 and P2 behave identically in all possible runs, that both are
sampled at a rate of 1/100, and that both are reached once per run. Then even though P1

and P2 are equivalent, there is only a 1/1002 chance of both being observed to be true
in a single run. These predicates will be observed in nearly disjoint sets of runs and
can easily be misinterpreted as two distinct predictors for two distinct bugs rather
than two equivalent predictors for a single bug.

To address this problem, we conducted the MOSS experiment with the sampling
rates of instrumentation sites set in inverse proportion to their frequency of execution.
Based on a training set of 1,000 executions, we set the sampling rate of each site so
as to obtain an expected 100 samples of each site in subsequent program executions,
but never below a minimum rate of 1/100. Thus, rarely executed code has a much
higher sampling rate than very frequently executed code. A similar strategy has been
pursued for similar reasons in related work [12].

For reasons of experimental convenience, MOSS was actually run with complete
data collection. Sampling was applied after the fact, as an offline postprocessing step.
Section 2.4 discussed some implementation strategies for true, dynamically nonuni-
form sampling. For a controlled experiment, though, offline downsampling gave us
greater freedom to experiment with different sampling options while holding the
true, complete data fixed. We simulate incomplete data by sampling values from bi-
nomial distributions on the complete data with appropriate probabilities at each site.
Because our runtime sampling is a Bernoulli process, the resulting data is exactly
equivalent to that which would result from true sampling at runtime.

We also activated more instrumentation: the branches scheme, the returns scheme,
and the scalar-pairs scheme with comparison to both variables and constants. These
form a reasonably general starting set in the general case of a program whose number
and kind of bugs are not already known. We generated 32,300 randomized runs and
used them to construct a regularized logistic regression model.

4.4.2 Analysis Results

A weakness of logistic regression for our application is that it seeks to cover the set
of failing runs without regard to the orthogonality of the selected predicates (i.e.,
whether they represent distinct bugs). This problem can be seen in Table 4.1, which
gives the top ten predicates selected by logistic regression for our controlled MOSS

experiment. The striking fact is that all selected predicates are either sub-bug or
super-bug predictors. The predicates beginning with p + ... are all sub-bug pre-
dictors of bug #1 (see Table 4.6). The predicates i > ... are super-bug predictors:
i is the length of the command line and the predicates say program crashes are more
likely for long command lines (recall Sect. 4.3.4).

The prevalence of super-bug predictors on the list shows the difficulty of making
use of the penalty term. Limiting the number of predicates that can be selected via a
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Table 4.1. Results of regularized logistic regression for MOSS

β Coefficient Predicate

0.769379 (p + passage_index)->last_line < 4
0.686149 (p + passage_index)->first_line < i
0.675982 i > 20
0.671991 i > 26
0.619479 (p + passage_index)->last_line < i
0.600712 i > 23
0.591044 (p + passage_index)->last_line == next
0.567753 i > 22
0.544829 i > 25
0.536122 i > 28

penalty has the effect of encouraging regularized logistic regression to choose super-
bug predictors, as these cover more failing runs at the expense of poorer predictive
power compared to predictors of individual bugs. On the other hand, the sub-bug
predictors are chosen based on their excellent prediction power of those small subsets
of failed runs. Relaxing the penalty allows logistic regression to add more predicates
to improve its prediction, but then sub-bug predictors apparently are favored instead.

4.5 Iterative Bug Isolation and Elimination

Difficulties with logistic regression prompt us to consider a completely different
analysis strategy based on filtering and iterative ranking of failure predictors. This
algorithm can be seen as a generalization of the simpler elimination algorithm in
Sect. 4.2. The idea is to simulate the iterative manner in which human programmers
might find and fix bugs:

1. Identify the most important bug B.
2. Fix B, and repeat.

This section presents our algorithm for automatically isolating multiple bugs. As
discussed in Sect. 4.1, the input is a set of feedback reports from individual program
runs R, where R(P) > 0 if predicate P is observed to be true at least once during the
execution of R.

For our purposes, identifying a bug Bi means selecting a predicate Pi closely
correlated with a bug profile (subset of failing runs) Bi. The difficulty is that we
know the set of runs that succeed and fail, but we do not know which set of failing
runs corresponds to B, or even how many bugs there are. In other words, we do not
know the sizes or membership of the set of bug profiles. Thus, in the first step we
must infer which predicates are most likely to correspond to individual bugs and rank
those predicates in importance.
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For the second step, while we cannot literally fix the bug corresponding to the
chosen predictor P, we can simulate what happens if the bug does not occur. We dis-
card any run R such that R(P) > 0 and repeat. Discarding all the runs where R(P) > 0
reduces the importance of other predictors of B, allowing predicates that predict dif-
ferent bugs (i.e., corresponding to different sets of failing runs) to rise to the top in
subsequent iterations.

4.5.1 Increase Scores

We now discuss the first step: how to find the cause of the most important bug.
We break this step into two sub-steps. First, we eliminate predicates that have no
predictive power at all, which typically reduces the number of predicates we need to
consider by two orders of magnitude (e.g., from hundreds of thousands to thousands).
Next, we rank the surviving predicates by importance (see Sect. 4.5.3).

Consider the following C code fragment:

f = ...; (a)
if (f == NULL) { (b)

x = 0; (c)
*f; (d)

}

Consider the predicate f == NULL at line (b), which would be captured by
branches instrumentation. Clearly this predicate is highly correlated with failure; in
fact, whenever it is true this program inevitably crashes.2 An important observation,
however, is that there is no one perfect predictor of failure in a program with multiple
bugs. Even a “smoking gun” such as f == NULL at line (b) has little or no predictive
power for failures due to unrelated bugs in the same program.

The bug in the code fragment above is deterministic with respect to f == NULL:
if f == NULL is true at line (b), the program fails. In many cases it is impossible to
observe the exact conditions causing failure; for example, buffer overrun bugs in a C
program may or may not cause the program to crash depending on runtime system
decisions about how data is laid out in memory. Such bugs are non-deterministic with
respect to every predicate; even for the best predictor P, it is possible that P is true
and still the program terminates normally. In the example above, if we insert before
line (d) a valid pointer assignment to f controlled by a conditional that is true at
least occasionally (say via a call to read input)

if (...)
f = ...some valid pointer ...;

*f;

then the bug becomes non-deterministic with respect to f == NULL.
To summarize, even for a predicate P that is truly the cause of a bug, we can

neither assume that when P is true that the program fails nor that when P is never

2 We also note that this bug could be detected by a simple static analysis; this example is
meant to be concise rather than a significant application of our techniques.
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observed to be true that the program succeeds. But we can express the probability that
P being true implies failure. Let Crash be an atomic predicate that is true for failing
runs and false for successful runs. Let Pr(A|B) denote the conditional probability
function of the event A given event B. We want to compute:

Fail(P) ≡ Pr(Crash|P observed to be true)

for every instrumented predicate P over the set of all runs. Let S(P) be the number
of successful runs in which P is observed to be true at least once, and let F(P) be the
number of failing runs in which P is observed to be true at least once. We estimate
Fail(P) as:

Fail(P) =
F(P)

S(P)+ F(P)

Notice that Fail(P) is unaffected by the set of runs in which P is not observed
to be true. Thus, if P is the cause of a bug, the causes of other independent bugs
do not affect Fail(P). Also note that runs in which P is not observed at all (either
because the line of code on which P is checked is not reached, or the line is reached
but P is not sampled) have no effect on Fail(P). The definition of Fail(P) generalizes
the idea of deterministic and non-deterministic bugs. A bug is deterministic for P
if Fail(P) = 1.0, or equivalently, P is never observed to be true in a successful run
(S(P) = 0) and P is observed to be true in at least one failing run (F(P) > 0). If
Fail(P) < 1.0 then the bug is non-deterministic with respect to P. Lower scores show
weaker correlation between the predicate and program failure.

Now Fail(P) is a useful measure, but it is not good enough for the first step of our
algorithm. To see why, consider again the code fragment given above in its original,
deterministic form. At line (b) we have Fail(f == NULL) = 1.0, so this predicate is
a good candidate for the cause of the bug. But on line (c) we have the unpleasant
fact that Fail(x == 0) = 1.0 as well. To understand why, observe that the predicate
x == 0 is always true at line (c) and, in addition, only failing runs reach this line.
Thus S(x == 0) = 0, and, so long as there is at least one run that reaches line (c) at
all, Fail(x == 0) at line (c) is 1.0.

As this example shows, just because Fail(P) is high does not mean P is the cause
of a bug. In the case of x == 0, the decision that eventually causes the crash is made
earlier, and the high Fail(x == 0) score merely reflects the fact that this predicate is
checked on a path where the program is already doomed.

A way to address this difficulty is to score a predicate not by the chance that it
implies failure, but by how much difference it makes that the predicate is observed to
be true versus simply reaching the line where the predicate is checked. That is, on line
(c), the probability of crashing is already 1.0 regardless of the value of the predicate
x == 0, and thus the fact that x == 0 is true does not increase the probability of
failure at all. This coincides with our intuition that this predicate is irrelevant to the
bug.

Recall that we write “P observed” when P has been reached and sampled at least
once, without regard to whether P was actually true or false. This convention leads
us to the following definition:
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Context(P) ≡ Pr(Crash|P observed)

Now, it is not the case that P is observed in every run, because the site where
this predicate occurs may not be reached, or may be reached but not sampled. Thus,
Context(P) is the probability that in the subset of runs where the site containing
predicate P is reached and sampled, the program fails. We can estimate Context(P)
as follows:

Context(P) =
F(P observed)

S(P observed)+ F(P observed)

The interesting quantity, then, is

Increase(P) ≡ Fail(P)−Context(P)

which can be read as: How much does P being true increase the probability of failure
over simply reaching the line where P is sampled? For example, for the predicate x
== 0 on line (c), we have

Fail(x == 0) = Context(x == 0) = 1.0

and so Increase(x == 0) = 0.
A predicate P with Increase(P)≤ 0 has no predictive power. Being true does not

increase the probability of failure, and we can safely discard all such predicates. But
because some Increase(P) scores may be based on few observations of P, it is im-
portant to attach confidence intervals to the scores. Since Increase(P) is a statistic,
computing a confidence interval for the underlying parameter is a well-understood
problem. In our experiments we retain a predicate P only if the 95% confidence in-
terval based on Increase(P) lies strictly above zero; this practice removes predicates
from consideration that have high increase scores but very low confidence because
of few observations.

Pruning predicates based on Increase(P) has several desirable properties. It is
easy to prove that large classes of irrelevant predicates always have scores ≤ 0. For
example, any predicate that is unreachable, that is a program invariant, or that is ob-
viously control-dependent on a true cause is eliminated by this test. It is also worth
pointing out that this test tends to localize bugs at a point where the condition that
causes the bug first becomes true, rather than at the crash site. For example, in the
code fragment given above, the bug is attributed to the success of the conditional
branch test f == NULL on line (b) rather than the pointer dereference on line (d).
Thus, the cause of the bug discovered by the algorithm points directly to the condi-
tions under which the crash occurs, rather than the line on which it occurs (which is
usually available anyway in the stack trace).

4.5.2 Statistical Interpretation

We have explained the test Increase(P) > 0 using programming terminology, but it
also has a natural statistical interpretation as a simplified likelihood ratio hypothesis
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test. Consider the two classes of trial runs of the program: failed runs F and suc-
cessful runs S. For each class, we can treat the predicate P as a Bernoulli random
variable with heads probabilities π f (P) and πs(P), respectively, for the two classes.
The heads probability is the probability that the predicate is observed to be true. If
a predicate causes a set of crashes, then π f should be much bigger than πs. We can
formulate two statistical hypotheses: the null hypothesis H0 : π f ≤ πs, versus the al-
ternate hypothesis H1 : π f > πs. Since π f and πs are not known, we must estimate
them:

π̂ f (P) =
F(P)

F(P observed)
π̂s(P) =

S(P)
S(P observed)

Although these proportion estimates of π f and πs approach the actual heads
probabilities as we increase the number of trial runs, they still differ due to sam-
pling. With a certain probability, using these estimates instead of the actual values
results in the wrong answer. A likelihood ratio test takes this uncertainty into ac-

count, and makes use of the statistic Z = (π̂ f −π̂s)
Vf ,s

, where Vf ,s is a sample variance
term (see, e.g., [38]). When the data size is large, Z can be approximated as a stan-
dard Gaussian random variable. Performed independently for each predicate P, the
test decides whether or not π f (P) ≤ πs(P) with a guaranteed false-positive probabil-
ity (i.e., choosing H1 when H0 is true). A necessary (but not sufficient) condition for
choosing H1 is that π̂ f (P) > π̂s(P). However, this condition is equivalent to the con-
dition that Increase(P) > 0. To see why, let a = F(P), b = S(P), c = F(P observed),
and d = S(P observed). Then

Increase(P) > 0 ⇐⇒ Fail(P) > Context(P)

⇐⇒ a
a + b

>
c

c + d
⇐⇒ a(c + d) > (a + b)c

⇐⇒ ad > bc ⇐⇒ a
c

>
b
d

⇐⇒ π̂ f (P) > π̂s(P)

4.5.3 Balancing Specificity and Sensitivity

We now turn to the question of ranking those predicates that survive pruning. Ta-
bles 4.2 through 4.4 show the top predicates under different ranking schemes (ex-
plained below) for one of our experiments. Additional per-predicate information,
such as source file and line number, is available in an interactive version of our analy-
sis tools.

We use a concise bug thermometer to visualize the information for each predi-
cate. The length of the thermometer is logarithmic in the number of runs in which the
predicate was observed, so small increases in thermometer size indicate many more
runs. Each thermometer has a sequence of bands. The black band on the left shows
Context(P) as a fraction of the entire thermometer length. The dark gray band ( )
shows the lower bound of Increase(P) with 95% confidence, also proportional to the
entire thermometer length. The light gray band ( ) shows the size of that confidence
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interval. It is very small in most thermometers, indicating a tight interval. The white
space at the right end of the thermometer shows S(P), the number of successful runs
in which the predicate was observed to be true. The tables show the thermometer as
well as the numbers for each of the quantities that make up the thermometer.

The most important bug is the one that causes the greatest number of failed runs.
This observation suggests:

Importance(P) = F(P)

Table 4.2 shows the top predicates ranked by decreasing F(P) after predicates
where Increase(P) ≤ 0 are discarded. The predicates in Table 4.2 are, as expected,
involved in many failing runs. However, the large white band in each thermometer
reveals that these predicates are also highly non-deterministic: they are also true in
many successful runs and are weakly correlated with bugs. Furthermore, the very
narrow dark gray bands ( ) in most thermometers indicate that most Increase scores
are very small.

Our experience with other ranking strategies that emphasize the number of failed
runs is similar. They select predicates involved in many failing, but also many suc-
cessful, runs. The best of these predicates (the ones with high Increase scores) are
super-bug predictors: predictors that include failures from more than one bug. Super-
bug predictors account for a very large number of failures (by combining the fail-
ures of multiple bugs) but are also highly non-deterministic despite reasonably high
Increase scores.

Another possibility is:

Importance(P) = Increase(P)

Table 4.3 shows the top predicates ranked by decreasing Increase score. Ther-
mometers here are almost entirely dark gray ( ), indicating Increase scores that are
very close to 1.0. These predicates do a much better job of predicting failure. In fact,
the program always fails when any of these predicates is true. However, observe that
the number of failing runs (F) is very small. These predicates are sub-bug predictors:
predictors for a subset of the failures caused by a bug. Unlike super-bug predictors,
which are not useful in our experience, sub-bug predictors that account for a signifi-
cant fraction of the failures for a bug often provide valuable clues. However, they still
represent special cases and may mask other, more fundamental, causes of the bug.

Tables 4.2 and 4.3 illustrate the difficulty of defining “importance.” We are look-
ing for predicates with high sensitivity, meaning predicates that account for many
failed runs. But we also want high specificity, meaning predicates that do not mis-
predict failure in many successful runs. In information retrieval, the corresponding
terms are recall and precision. A standard way to combine sensitivity and specificity
is to compute their harmonic mean; this measure prefers high scores in both dimen-
sions. In our case, Increase(P) measures specificity. For sensitivity, we have found it
useful to consider a transformation φ of the raw counts, and to form the normalized
ratio φ(F(P))/φ(NumF), where NumF is the total number of failed runs. In our work
thus far φ has been a logarithmic transformation, which moderates the impact of very
large numbers of failures. Thus our overall metric is the following:
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Importance(P) =
2

1
Increase(P) + 1

log(F(P))/log(NumF)

Table 4.4 gives results using this metric. Individual F(P) counts are smaller than
in Table 4.2, and individual Increase(P) scores are smaller than in Table 4.3, but the
harmonic mean has effectively balanced both of these important factors. All of the
predicates on this list indeed have both high specificity and sensitivity. Each of these
predictors accurately describes a large number of failures.

4.5.4 Redundancy Elimination

The remaining problem with the results in Table 4.4 is that there is substantial redun-
dancy; it is easy to see that several of these predicates are related. This redundancy
hides other, distinct bugs that either have fewer failed runs or more non-deterministic
predictors further down the list. As discussed above, we use a simple iterative algo-
rithm to eliminate redundant predicates:

1. Rank predicates by Importance.
2. Remove the top-ranked predicate P and discard all runs R (feedback reports)

where R(P) > 0.
3. Repeat these steps until the set of runs is empty or the set of predicates is empty.

We can now state an easy-to-prove but important property of this algorithm.

Lemma 1. Let P1, . . . ,Pn be a set of instrumented predicates, B1, . . . ,Bm a set of bugs,
and B1, . . . ,Bm the corresponding bug profiles. Let

Z =
⋃

1≤i≤n

{R|R(Pi) > 0}.

If for all 1 ≤ j ≤ m we have B j ∩Z �= /0, then the algorithm chooses at least one
predicate from the list P1, . . . ,Pn that predicts at least one failure due to B j.

Thus, the elimination algorithm chooses at least one predicate predictive of each
bug represented by the input set of predicates. We are, in effect, covering the set of
bugs with a ranked subset of predicates. The other property we might like, that the
algorithm chooses exactly one predicate to represent each bug, does not hold; we
shall see in Sect. 4.6 that the algorithm sometimes selects a strong sub-bug predictor
as well as a more natural predictor.

Beyond always representing each bug, the algorithm works well for two other
reasons. First, two predicates are redundant if they predict the same (or nearly the
same) set of failing runs. Thus, simply removing the set of runs in which a predicate
is true automatically dramatically reduces the importance of any related predicates in
the correct proportions. Second, because elimination is iterative, it is only necessary
that Importance selects a good predictor at each step, and not necessarily the best
one; any predicate that covers a different set of failing runs than all higher-ranked
predicates is selected eventually.
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Table 4.5. Summary statistics for bug isolation experiments
Runs Predicate Counts

Line Count Successful Failing Sites Initial Increase > 0 Elimination

MOSS 6,001 26,299 5,598 35,223 202,998 2,740 21
CCRYPT 5,276 20,684 10,316 9,948 58,720 50 2
BC 14,288 23,198 7,802 50,171 298,482 147 2
RHYTHMBOX 56,484 12,530 19,431 145,176 857,384 537 15
EXIF 10,588 30,789 2,211 27,380 156,476 272 3

4.6 Case Studies

In this section we present the results of applying the algorithm described in Sect. 4.5
in five case studies. Complete analysis results for all experiments in this section may
be browsed interactively at <http://www.cs.wisc.edu/~liblit/dissertation/
supplemental/> or on an archival DVD accompanying the original dissertation.

Table 4.5 shows summary statistics for each of the experiments. In each study
we ran the programs on about 32,000 random inputs. The number of instrumentation
sites varies with the size of the program, as does the number of predicates those
instrumentation sites yield. Our algorithm is very effective in reducing the number
of predicates the user must examine. For example, in the case of RHYTHMBOX an
initial set of 857,384 predicates is reduced to 537 by the Increase(P) > 0 test, a
reduction of 99.9%. The elimination algorithm then yields 15 predicates, a further
reduction of 97%. The other case studies show a similar reduction in the number of
predicates by 3-4 orders of magnitude.

All results that follow are derived from sampled data collected as in Sect. 4.4.1:
nonuniform sampling, inversely linear in site coverage based on 1,000 training runs,
set to yield an expected 100 samples per site, with a minimum rate of 1/100. We have
validated this approach by comparing the results for each experiment with results
obtained with no sampling at all (i.e., the sampling rate of all predicates set to 100%).
The results are identical except for the RHYTHMBOX and MOSS experiments, where
we judge the differences to be minor: sometimes a different but logically equivalent
predicate is chosen, the ranking of predictors of different bugs is slightly different,
or one or the other version has a few extra, weak predictors at the tail end of the list.

4.6.1 MOSS

We begin by applying the elimination algorithm to MOSS, using the same seeded
bugs and the same initial feedback data that stumped regularized logistic regression
in Sect. 4.4. Table 4.6 shows the results of the elimination algorithm on the same
data. The predicates listed were selected by the elimination algorithm in the order
shown. The first column is the initial bug thermometer for each predicate, showing
the Context and Increase scores before elimination is performed. The fourth column
is the effective bug thermometer, showing the Context and Increase scores for a pred-
icate P at the time P is selected (i.e., when it is the top-ranked predicate). Thus the

http://www.cs.wisc.edu/~liblit/dissertation/supplemental/
http://www.cs.wisc.edu/~liblit/dissertation/supplemental/
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effective thermometer reflects the cumulative diluting effect of redundancy elimina-
tion for all predicates selected before this one.

As part of the experiment we separately recorded the exact set of bugs that ac-
tually occurred in each run. The columns at the far right of Table 4.6 show, for each
selected predicate and for each bug, the number of runs in which both the selected
predicate is observed to be true and the bug occurs. Note that while each predicate
has a very strong spike at one bug, indicating it is a strong predictor of that bug,
there are always some runs with other bugs present. For example, the top-ranked
predicate, which is overwhelmingly a predictor of bug #5, also includes some runs
where bugs #3, #4, and #9 occurred. This situation is not the result of misclassifi-
cation of failing runs by our algorithm. Rather, more than one bug may occur in a
run. It simply happens that in some runs bugs #5 and #3 both occur (to pick just one
possible combination).

A particularly interesting case of this phenomenon is bug #7, one of the buffer
overruns. Bug #7 is not strongly predicted by any predicate on the list but in fact
occurs in at least a few of the failing runs of most predicates. We have examined the
runs of bug #7 in detail and found that the bug #7 only occurs in runs that also trigger
at least one other bug. That is, even when the bug #7 overrun happens, it never causes
incorrect output or a crash in any run. Bug #8, another overrun, is not even shown
because the overrun is never triggered in our data (its column would be all zeros).
There is no way our algorithm can find causes of bugs that do not occur, but recall
that part of our purpose in sampling user executions is to get an accurate picture of
the most important bugs. It is consistent with this goal that if a bug never causes a
problem, it is not only not worth fixing, it is not even worth reporting.

The other bugs all have strong predictors on the list. In fact, the top eight pred-
icates have exactly one predictor for each of the seven bugs that occur, with the
exception of bug #1, which has one very strong sub-bug predictor in the second spot
and another predictor in the sixth position. Notice that even the rarest bug, bug #2,
which occurs more than an order of magnitude less frequently than the most com-
mon bug, is identified immediately after the last of the other bugs.3 Furthermore, we
have verified by hand that the selected predicates would, in our judgment, lead an
engineer to the cause of the bug. Overall, the elimination algorithm does an excellent
job of listing separate causes of each of the bugs in order of priority, with very little
redundancy.

Below the eighth position there are no new bugs to report and every predicate is
correlated with predicates higher on the list. Even without the columns of numbers at
the right it is easy to spot the eighth position as the natural cutoff. Keep in mind that
the length of the thermometer is on a log scale, hence changes in larger magnitudes
may appear less evident. Notice that the initial and effective thermometers for the first
eight predicates are essentially identical. Only the predicate at position six is notice-
ably different, indicating that this predicate is somewhat affected by a predicate listed
earlier (specifically, its companion sub-bug predictor at position two). However, all

3 The peculiar eighth predicate, f < f, says that after an assignment the new value of f is
less than the old value of f.
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Table 4.7. Predictors for CCRYPT

Initial Effective Predicate

res == nl
line <= outfile

Table 4.8. Predictors for BC

Initial Effective Predicate

a_names < v_names
old_count == 32

of the predicates below the eighth line have very different initial and effective ther-
mometers (either many fewer failing runs, or much more non-deterministic, or both)
showing that these predicates are strongly affected by higher-ranked predicates.

The displays presented thus far have a drawback illustrated by the MOSS experi-
ment: It is not easy to identify the predicates to which a predicate is closely related.
Such a feature would be useful in confirming whether two selected predicates rep-
resent different bugs or are in fact related to the same bug. We do have a measure
of how strongly P implies another predicate P′: How does removing the runs where
R(P) > 0 affect the importance of P′? The more closely related P and P′ are, the
more P′’s importance drops when P’s failing runs are removed. In the interactive
version of our analysis tools, each predicate P in the final, ranked list of predicates
can zoom in to a linked affinity list of all predicates ranked by how much P causes
their ranking score to decrease.

4.6.2 CCRYPT

We revisited CCRYPT 1.2, which has a known input validation bug as discussed in
Sect. 4.2.1. The results are shown in Table 4.7. Our algorithm reports two predictors,
both of which point directly to the single bug. It is easy to discover that the two pre-
dictors are for the same bug; the first predicate is listed first in the second predicate’s
affinity list, indicating the first predicate is a sub-bug predictor associated with the
second predicate.

4.6.3 BC

We revisited GNU BC 1.06, which has a buffer overrun bug as discussed in Sect. 4.3.
Our results are shown in Table 4.8. The outcome is the same as for CCRYPT: two
predicates are retained by elimination, and the second predicate lists the first predi-
cate at the top of its affinity list, indicating that the first predicate is a sub-bug predic-
tor of the second. Both predicates point to the cause of the overrun. This bug causes
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Table 4.9. Predictors for EXIF

Initial Effective Predicate

i < 0
maxlen > 1900
o + s > buf_size is TRUE

a crash long after the overrun occurs and there is no useful information on the stack
at the point of the crash to assist in isolating this bug.

4.6.4 EXIF

Table 4.9 shows results for EXIF 0.6.9, an open source image processing program.
Each of the three predicates is a predictor of a distinct and previously unknown crash-
ing bug. It took less than 20 minutes of work to find and verify the cause of each of
the bugs using these predicates and the additional highly correlated predicates on
their affinity lists.

To illustrate how statistical debugging is used in practice, we use the last of these
three failure predictors as an example, and describe how it guided us to the cause
of one of the bugs. Failed runs exhibiting o + s > buf_size show the following
unique stack trace at the point of termination:

main
exif_data_save_data

exif_data_save_data_content
exif_data_save_data_content

exif_data_save_data_entry
exif_mnote_data_save

exif_mnote_data_canon_save
memcpy

The code in the vicinity of this crash site is as follows:

// snippet of exif_mnote_data_canon_save
for (i = 0; i < n->count; i++) {

...
memcpy(*buf + doff, n->entries[i].data, s); (c)
...

}

This stack trace alone provides little insight into the cause of the bug. How-
ever, our statistical debugging algorithm highlights o + s > buf_size in function
exif_mnote_data_canon_load as a strong bug predictor. Thus, a quick inspection
of the source code leads us to construct the following call sequence:
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main
exif_loader_get_data

exif_data_load_data
exif_mnote_data_canon_load

exif_data_save_data
exif_data_save_data_content

exif_data_save_data_content
exif_data_save_data_entry

exif_mnote_data_save
exif_mnote_data_canon_save

memcpy

The code in the vicinity of the predicate o + s > buf_size is as follows:

// snippet of exif_mnote_data_canon_load
for (i = 0; i < c; i++) {

...
n->count = i + 1;
...
if (o + s > buf_size) return; (a)
...
n->entries[i].data = malloc(s); (b)
...

}

It is apparent from the above code snippets and the call sequence that whenever
the predicate o + s > buf_size is true,

• the function exif_mnote_data_canon_load returns on line (a), skipping the
call to malloc on line (b) and therefore leaving n->entries[i]->data unini-
tialized for some value of i, and

• the function exif_mnote_data_canon_save passes this uninitialized value from
n->entries[i]->data to memcpy on line (c), which reads it and eventually
crashes.

In summary, our algorithm enabled us to effectively isolate the causes of several
previously unknown bugs in source code unfamiliar to us in a small amount of time
and without any explicit specification beyond “the program shouldn’t crash.”

4.6.5 RHYTHMBOX

Table 4.10 shows our results for RHYTHMBOX 0.6.5, an interactive, graphical, open
source music player. RHYTHMBOX is a complex, multi-threaded, event-driven sys-
tem, written using a library providing object-oriented primitives in C. Event-driven
systems use event queues; each event performs some computation and possibly adds
more events to some queues. We know of no static analysis today that can analyze
event-driven systems accurately, because no static analysis is currently capable of
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Table 4.10. Predictors for RHYTHMBOX

Initial Effective Predicate

tmp is FALSE
(mp->priv)->timer is FALSE
(view->priv)->change_sig_queued is TRUE
(hist->priv)->db is TRUE
rb_playlist_manager_signals[0] > 269
(db->priv)->thread_reaper_id >= 12
entry == entry
fn == fn
klass > klass
genre < artist
vol <= (float )0 is TRUE
(player->priv)->handling_error is TRUE
(statusbar->priv)->library_busy is TRUE
shell < shell
len < 270

analyzing the heap-allocated event queues with sufficient precision. Crash reporting
systems are also of limited utility in analyzing event-driven systems, as the stack in
the main event loop is unchanging and all of the interesting state is in the queues.

We isolated two distinct bugs in RHYTHMBOX. The first predicate in Table 4.10
led us to the discovery of a race condition. This bug turned out to be a previously
unrecognized incorrect pattern of accessing the underlying object library. A simple
syntactic static analysis subsequently showed more than one hundred instances of
the same unsafe pattern throughout RHYTHMBOX. Perhaps the greatest strength of
our system is its ability to automatically identify the cause of many different kinds of
bugs, including new classes of bugs that we did not anticipate in building the tool. By
relying only on the distinction between good and bad executions, our analysis does
not require a specification of the program properties to be analyzed. Thus, statistical
debugging provides a complementary approach to static analyses, which generally
do require specification of the properties to check. Statistical debugging can identify
bugs beyond the reach of static analysis techniques and even new classes of bugs that
may be amenable to static analysis if anyone thought to check for them.

The second predicate from Table 4.10 was not useful directly, but we were able
to isolate the bug using the predicates in its affinity list. In particular, the following
strongly correlated predicate appears near the very top of that affinity list:

lib/disclosure-widget.c:77: in function cddb_source_destroy:
g_source_remove return value > 0

This related predicate is a true “smoking gun” that directly led us to both the
problem and its solution. It tells us that RHYTHMBOX tends to fail when a particular
call to g_source_remove returns a positive value. Library documentation [23] re-
veals that g_source_remove uses its integer return value as a success/failure code,
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as is common in C. Surprisingly, positive return values indicate success. This func-
tion call usually fails. In the rare case where the call succeeds, the entire program
subsequently crashes. Of course this phenomenon is exactly the opposite of how we
expected the returns instrumentation scheme to expose bugs, but it is just as effective.
A simple syntactic static analysis revealed a second instance of the same bad code
pattern. This second instance was ultimately found to be the cause of an open, pre-
viously reported RHYTHMBOX bug. That bug had gone undiagnosed and unfixed for
several months due in part to the difficulty of reproducing the problem in a controlled
test environment.

RHYTHMBOX developers confirmed the problems we found and enthusiastically
applied patches within a few days, in part because we could quantify the bugs as
important crashing bugs. It required several hours to isolate each of the two bugs,
partly because RHYTHMBOX is complex and partly because the bugs were violations
of subtle heap invariants that are not directly captured by our current instrumentation
schemes. Note, however, that we could not have even begun to understand these
bugs without the information provided by our tool. Exploring schemes that track
predicates on heap structure remains an important area for future work.



5

Related Work

Given enough eyes, all bugs are shallow.

–Eric S. Raymond, The Cathedral and the Bazaar

Here we discuss a cross section of related work, loosely organized into three broad
topics. We briefly visit static analyses that examine code without running it. We
consider earlier approaches to profiling and tracing running code, most of which
have concentrated on performance profiling. Lastly we review dynamic analyses that
focus more directly on the problem of debugging, including several that use statistical
methods.

5.1 Static Analysis

There is currently a great deal of interest in applying specialized static analysis to
improve software quality. Static analyses can help to find bugs earlier in develop-
ment when they are cheaper to fix. Purely analytic approaches build upon such for-
malisms as type systems [25, 37], automated theorem proving [22], and software
model checking [31]. Some static analyses can guarantee that certain classes of bugs
can never occur in any run. Strong assurances of this form may be required in certain
domains, and cannot generally be obtained from dynamic schemes such as CBI.

While we firmly believe in the use of static analysis to find and prevent bugs, our
dynamic approach has advantages as well. A dynamic analysis can observe actual
run-time values, which is often better than either making a very conservative static
assumption about run-time values for the sake of soundness, or allowing some very
simple bugs to escape undetected. Another advantage of dynamic analysis, especially
one that mines actual user executions for its data, is the ability to assign an accurate
importance to each bug. Additionally, as we have shown, a dynamic analysis that
does not require an explicit specification of the properties to check can find clues to
a very wide range of errors, including classes of errors not considered in the design
of the analysis.

A complementary family of static bug hunting tools places more emphasis on
human factors in software development. Static metrics of software complexity and
other factors can guide engineers to likely hiding places for bugs [51]. The chrono-
logical record captured by a source code control system can be mined to reveal areas
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of high code churn or to raise warning flags when code is changed in a manner in-
consistent with historical patterns [63, 66]. Any of these systems might reasonably
be integrated with Cooperative Bug Isolation, such as by increasing the sampling
density in code that appears suspect.

5.2 Profiling and Tracing

Dynamic program sampling has a long history, with most applications focusing on
performance profiling and optimization. Any sampling system must define a trigger
mechanism that signals when a sample is to be taken. Typical triggers include peri-
odic hardware timers or interrupts [9, 59, 61], periodic software event counters (e.g.,
every nth function call) [3], or a hardware/software mix. In most cases, the sampling
interval is strictly periodic. Periodic sampling may suffice when hunting for large
performance bottlenecks, but may systematically miss rare events.

The Digital Continuous Profiling Infrastructure [1] is unusual in choosing sam-
pling intervals randomly. However, the random distribution is uniform, such as one
sample every 60K to 64K cycles. Samples thus extracted are not independent. If one
sample is taken, there is zero chance of taking any sample in the next 1–59,999 cy-
cles and zero chance of not taking exactly one sample in the next 60K–64K cycles.
We trigger samples based on a geometric distribution, which correctly models the
interval between successful independent coin tosses. The resulting data is a statisti-
cally rigorous fair random sample, which in turn grants access to a large domain of
powerful statistical analyses.

Recent work in trace collection has focused on program understanding. Tech-
niques for capturing program traces confront challenges similar to those we face
here, such as minimizing performance overhead and managing large quantities of
captured data. Dynamic analysis in particular must encode, compress, or otherwise
reduce an incoming trace stream in real time, as the program runs [14, 55]. It may be
difficult to directly adapt dynamic trace analysis techniques to a domain where the
trace is sampled and therefore incomplete.

Path profiling subsumes basic block and edge profiling to directly monitor how
often each acyclic path in a program executes. Optimizations first developed by Ball
and Larus [4] limit instrumentation to loop back edges and chord edges not in a
special spanning tree constructed for each acyclic region. This work relates to ours
in three respects. First, feedback reports containing path profiles may be an inter-
esting target for bug isolation data mining. A program may succeed on most paths
but fail on some others. Second, the acyclic regions we use for overhead amortiza-
tion (Sect. 2.1.1) correspond well to those used by Ball and Larus to build spanning
trees. It should not be difficult to integrate the two analyses, thereby collecting fair
random samples of complete path profiles. Lastly, a variant of our proposed path bal-
ancing algorithm (Sect. 2.3.6) might be layered atop a path profiler. Paths within an
acyclic region carry unique indexes. Instead of balancing all paths, a path-indexed
table could record the exact (unbalanced) instrumentation weight for each path. This
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table would then be used to find the aggregated net decrement to the global next
sample countdown for each uninstrumented traversal.

Subsection 2.1.2 discussed Arnold and Ryder’s framework for lightweight instru-
mentation [2] and our adaptation of it to use strictly fair random sampling. Recent
developments by Chilimbi and others adapt Arnold and Ryder’s work in comple-
mentary ways. Hirzel and Chilimbi [32] collect temporal profile “bursts” by allowing
execution to remain on the instrumented slow path for longer periods of time. This
technique could augment our own, which currently provides only rudimentary tem-
poral information in the form of time stamps (Sect. 2.2.3). Chilimbi and Hauswirth
[12] adjust acyclic regions’ sampling rates dynamically, within a single execution.
This sort of rapid adjustment is useful when bench testing with few test cases. It may
be less important when the “test cases” are users numbering in the thousands or mil-
lions. Performance overhead is quite small in both studies: 3-18% for the former and
3-6% for the later. We attribute this result to two factors. First, the sampling strategy
is not truly statistically fair or random as in our work. This short cut eliminates some
overhead, and in particular means that the fast path is completely instrumentation
free. Our proposed path balancing algorithm (Sect. 2.3.6) also yields an instrumen-
tation free fast path, and therefore may allow us to approach the same low overheads
achieved by Chilimbi. Second, Chilimbi’s implementation uses a binary rewriting
system [16] rather than operating on source code. While we have found source-to-
source transformation to be convenient for research, it does leave our performance
subject to the whims of the native C compiler’s optimizer. Direct binary manipulation
may yield more reliable results.

5.3 Dynamic Analysis

Our effort to understand and debug programs by selecting predicates is partly in-
spired by Daikon [20]. Like Daikon, we begin with fairly unstructured guesses and
eliminate those that do not appear to hold. Unlike Daikon, we are concerned with
gathering data from production code, which leads us to use sampling of a large num-
ber of runs and statistical models; the Daikon experiments are done on a smaller
number of complete traces. We are also interested in detecting bugs, while Daikon
focuses on the somewhat different problem of detecting program invariants. Some
initial efforts have been made to find bugs by comparing Daikon-detected invariants
in good and bad runs [54]. This work is similar to our basic predicate elimination
strategy of Sect. 4.2.

In a related project, Dodoo et al. [15] use clustering analysis to select conditional
predicates of the form p =⇒ q that might be true and that are worth tracking dynam-
ically using Daikon. Our instrumentation schemes are currently quite simpleminded
in how they select what might be interesting. Performance could certainly be im-
proved by using static analysis to make more selective instrumentation choices up
front. However, one must exercise caution: the formal semantics of buggy programs
are rarely specified [62] and difficult to codify, especially if memory safety is not
assured.
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The DIDUCE project [27] also attempts to identify bugs using analysis of exe-
cutions. Unlike Daikon, most processing does take place within the client program.
As in our study, DIDUCE attempts to relate changes in predicates to the manifesta-
tion of bugs. However, DIDUCE performs complete tracing and focuses on discrete
state changes, such as the first time a predicate transitioned from true to false. Our
approach is more probabilistic: we wish to identify broad trends over time that cor-
relate predicate violations with increased likelihood of failure.

Software tomography as realized through the GAMMA system [5] shares our
goal of low-overhead distributed monitoring of deployed code. Applications to
date have focused on code coverage and traditional performance monitoring tasks,
whereas our primary interest is bug isolation. Our strategy uses randomization within
a single instrumented binary, while GAMMA emphasizes choices in initial probe
placement and iterative refinement over time. Our earlier discussion of statically se-
lective sampling (see Sect. 2.3.7) suggests that these two considerations are com-
plementary. It is also worth noting that our predicates do indirectly yield coverage
information: given fair sampling, the sum of all predicate counters at a site converges
on the true relative coverage of that site.

Efforts to directly apply statistical modeling principles to debugging have met
with mixed results. Early work in this area by Burnell and Horvitz [8] uses program
slicing in conjunction with Bayesian belief networks to filter and rank the possible
causes for a given bug. Empirical evaluation shows that the slicing component alone
finds 65% of bug causes, while the probabilistic model correctly identifies another
10%. This additional payoff may seem small in light of the effort, measured in mul-
tiple man-years, required to distill experts’ often tacit knowledge into a formal belief
network. However, the approach does illustrate one strategy for integrating informa-
tion about program structure into the statistical modeling process.

In more recent work, Podgurski et al. [53] apply statistical feature selection, clus-
tering, and multivariate visualization techniques to the task of classifying software
failure reports. The intent is to bucket each report into an equivalence group believed
to share the same underlying cause. Features are derived offline from fine-grained
execution traces without sampling; this approach reduces the noise level of the data
but greatly restricts the instrumentation schemes that are practical to deploy outside
of a controlled testing environment. As in our own earlier work, Podgurski uses lo-
gistic regression to select features that are highly predictive of failure. Clustering
tends to identify small, tight groups of runs that do share a single cause but that are
not always maximal. That is, one cause may be split across several clusters.

In contrast, current industrial practice uses stack traces to cluster failure reports
into equivalence classes. Two crash reports showing the same stack trace, or perhaps
only the same top-of-stack function, are presumed to be two reports of the same fail-
ure. This heuristic works to the extent that a single cause corresponds to a single
point of failure, but our experience with MOSS, RHYTHMBOX, and EXIF suggests
that this assumption may not often hold. In MOSS, we find that only bugs #2 and
#5 have truly unique “signature” stacks: a crash location that is present if and only
if the corresponding bug was actually triggered. These bugs are also our most deter-
ministic. Bugs #4 and #6 also have nearly unique stack signatures. The remaining
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bugs are much less consistent: each stack signature is observed after a variety of
different bugs, and each triggered bug causes failure in a variety of different stack
states. RHYTHMBOX and EXIF bugs caused crashes so long after the bad behavior
that stacks were of limited use or no use at all.

For some highly available systems, even a single failure must be avoided. Once
the behaviors that predict imminent failure are known, automatic corrective measures
may be able to prevent the failure from occurring at all. The Software Dependability
Framework (SDF) [26] uses multivariate state estimation techniques to model and
thereby predict impending system failures. Instrumentation is assumed to be com-
plete and is typically domain-specific.

Studies that attempt real-world deployment of monitored software must address
a host of practical engineering concerns, from distribution to installation to user
support to data collection and warehousing. Elbaum and Hardojo [17, 18] have re-
ported on a limited deployment of instrumented Pine binaries. Their experiences
have helped to guide our own design of a wide public deployment of applications
with sampled instrumentation, presently underway [40].
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Conclusion

Beware of bugs in the above code; I have only proved it
correct, not tried it.

–Donald Knuth, “Notes on the van Emde Boas construction
of priority deques: An instructive use of recursion”

It is an unfortunate fact that essentially all deployed software systems have bugs, and
that users often encounter these bugs. The resources (measured in time, money, or
people) available for improving software are always limited.

Widespread Internet connectivity makes possible a radical change to this situ-
ation. For the first time it is feasible to directly observe the reality of a software
system’s deployment. Through sheer numbers, the user community brings far more
resources to bear on exercising a piece of software than could possibly be provided
by the software’s authors. Coupled with an instrumentation, reporting, and analysis
infrastructure, these users can potentially replace guesswork with real triage, direct-
ing scarce engineering resources to those areas that benefit the most people.

The Cooperative Bug Isolation project represents one effort to leverage the
strength in these users’ numbers. We have designed, developed, and deployed a de-
bugging support system that encompasses a complete feedback loop from source to
users to feedback to bug fixes.

In terms of the original goals of this research, CBI is a qualified success. Our
instrumentation strategy provides fair, randomly sampled data suitable for use with a
wide range of statistical analyses. The sampling transformation is quite general, and
may be of independent interest in areas beyond just bug hunting. For CPU-intensive
applications such as performance benchmarks, our current implementation requires
exclusion of bottleneck code in order to limit overhead. However there is room for
improvement. Similar sampling schemes described in Chap. 5, especially those by
Chilimbi et al., have achieved very low overheads. The path balancing optimization,
proposed in Sect. 2.3.6 but not yet implemented, leaves the fast path almost entirely
instrumentation free and thereby should significantly improve performance. We have
not pursued performance optimizations further in this work because the current sys-
tem is good enough for the applications we have looked at so far, both in controlled
case studies and in our public deployment.

The engineering challenge of creating a deployable system has been met. The
public deployment is, in a word, real. It includes instrumented binaries ready to
download and install, polished user interfaces, a secure feedback collection server,
and a community of end users who trust and use our code every day. This user com-
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munity is not yet large enough to drive our statistical bug isolation algorithms; re-
search of this kind is inherently difficult in an academic environment. Nevertheless,
we feel it has been a valuable exercise to push the entire system forward to the point
where it was ready to face the public at all. Our experience with the public deploy-
ment gives us much greater confidence that a system like the one we propose is
practical and viable.

Lastly, the statistical debugging techniques we have described show that one can
actually find and fix bugs with sparsely sampled data. At the outset of this project it
was unclear just how little information one could get away with. We have success-
fully isolated single bugs and multiple bugs; deterministic bugs and nondeterministic
bugs; bugs in batch-oriented systems and bugs in multi-threaded interactive systems;
known bugs seeded in known code and previously unknown bugs discovered in code
unfamiliar to the CBI team. We believe that statistical debugging based on automated
user feedback has the potential to be a valuable addition to the software engineer’s
bug hunting repertoire.
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